Skip to main content
Log in

An ultrastructural study of microsporogenesis in tobacco line SR1

  • Section Cellular and Molecular Biology
  • Published:
Biologia Aims and scope Submit manuscript

Abstract

This article provides an ultrastructural atlas of microsporogenesis in the tobacco model line SR1. The stages of cell-wall remodeling and reorganization of the intercellular channels, accompanying this process, are reported for the microspore mother cells. The meiotic changes in the cell nucleus and cytoplasm are traced. The appearance of single-, double-, or multi-membrane nuclear vacuoles in microspore mother cells and their further elimination from the nucleus are for the first time described for the genus Nicotiana as well as deviations from a normal course for this process. Intercellular chromatin migration (cytomixis) was observed in the microsporogenesis of the line SR1 and behavior of the nuclear vacuoles within the cytomictic nucleus was described for the first time. The enzymatic activity of spherosome-like vesicles in the tobacco microsporogenesis is discussed. The features of microsporogenesis in the tobacco line SR1 are compared with those of other plant species and its association with the transition from a diploid to a haploid phase of the life cycle is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ER:

endoplasmic reticulum

MMC:

microspore mother cell

References

  • Arnoldy W. 1900. Beiträge zur Morphologie der Gymnospermen. IV. Was sind die “Keimbläschen” oder “Hofmeisters-Körperchen” in der Eizelle der Abietineen? Flora 87: 194–204.

    Google Scholar 

  • Bhandari N.N. 1984. The microsporangium, pp. 53–121. In: Johri B.M. (ed.) Embryology of Angiosperms. Springer-Verlag, Berlin.

    Chapter  Google Scholar 

  • Brown R.C. & Lemmon B.E. 2001. The cytoskeleton and spatia control of cytokinesis in the plant life cycle. Protoplasma 215: 35–49.

    Article  PubMed  CAS  Google Scholar 

  • Falistocco E., Tosti N. & Falcinelli M. 1995. Cytomixis in pollen mother cells of diploid Dactylis, one of the origins of 2n gametes. J. Hered. 86: 448–453.

    Google Scholar 

  • Ghaffari G.M. 2006. Occurrence of diploid and polyploidy microspores in Sorghum bicolor (Poaceae) is the result of cytomixis. Afr. J. Biotechnol. 5: 1450–1453.

    Google Scholar 

  • Heslop-Harrison J. 1966. Cytoplasmic connections between angiosperm meiocytes. Ann. Bot. 30: 221–230.

    Google Scholar 

  • Izhar S. & Frankel R. 1971. Mechanism of male sterility in Petunia: the relationship between pH, callase activity in the anthers, and the breakdown of the microsporogenesis. Theor. Appl. Genet. 41: 104–108.

    Article  Google Scholar 

  • Johnson J.M. 1969. A study of nucleolar vacuoles in cultured tobacco cells using radioautography, actinomycin D, and electron microscopy. J. Cell Biol. 43: 197–206.

    Article  PubMed  CAS  Google Scholar 

  • Karasawa R. & Ueda K. 1983. Nuclear vacuoles and synizesis during meiotic prophase in Haplopappus gracilis. Cytologia 48: 819–826.

    Article  Google Scholar 

  • Kim J.S., Oginuma K. & Tobe H. 2009. Syncyte formation in the microsporangium of Chrysanthemum (Asteraceae): a pathway to infraspecific polyploidy. J. Plant Res. 122: 439–444.

    Article  PubMed  Google Scholar 

  • Knox R.B. 1984. The pollen grain, pp. 197–271. In: Johri B.M. (ed.) Embryology of Angiosperms. Springer-Verlag, Berlin.

    Chapter  Google Scholar 

  • Kumar P., Singhal V.K., Kaur D. & Kaur S. 2010. Cytomixis and associated meiotic abnormalities affecting pollen fertility in Clematis orientalis. Biologia Plant. 54: 181–184.

    Article  Google Scholar 

  • Lattoo S.K., Khan S., Bamotra S. & Dhar A.K. 2006. Cytomixis impairs meiosis and influences reproductive success in Chlorophytum comosum (Thunb) Jacq — an additional strategy and possible implications. J. Biosci. 31: 629–637.

    Article  PubMed  CAS  Google Scholar 

  • Majewska-Sawka A., Bohdanowicz J., Jassem B. & Rodriguez-Garcia M.I. 1990. Development of nuclear vacuoles in sugar beet male meiocytes. Ann. Bot. 66: 139–146.

    Google Scholar 

  • Maliga P., Sz.-Breznovits A. & Marton L. 1973. Streptomycin-resistant plants from callus culture of haploid tobacco. Nat. New Biol. 244: 29–30.

    PubMed  CAS  Google Scholar 

  • Morena-Dias de la Espina S., Medina F.J. & Risueno M.C. 1980. Correlation of nucleolar activity and nucleolar vacuolation in plant cells. Eur. J. Cell Biol. 22: 724–729.

    PubMed  CAS  Google Scholar 

  • Mursalimov S.R., Baiborodin S.I., Sidorchuk Y.V., Shumny V.K. & Deineko E.V. 2010. Characteristics of the cytomictic channel formation in Nicotiana tabacum L. pollen mother cells. Cytol. Genet. 44: 14–18.

    Article  Google Scholar 

  • Mursalimov S.R. & Deineko E.V. 2011. An ultrastructural study of cytomixis in tobacco pollen mother cell. Protoplasma 248: 717–724.

    Article  PubMed  Google Scholar 

  • Negron-Ortiz V. 2007. Chromosome numbers, nuclear DNA content, and polyploidy in Consolea (Cactaceae), an endemic cactus of the Caribbean Islands. Am. J. Bot. 94: 1360–1370.

    Article  PubMed  Google Scholar 

  • Polowick P.L. & Sawhney V.K. 1992. Ultrastructural changes in the cell wall, nucleus and cytoplasm of pollen mother cells during meiotic prophase I in Lycopersicon esculentum (Mill.). Protoplasma 169: 139–147.

    Article  Google Scholar 

  • Popova A.F., Ivanenko G.F., Ustinova A.Y. & Zaslavsky V.A. 2008. Localization of callose in microspores and pollen grains in Sium latifolium L. plants in different water regimes. Cytol. Genet. 42: 363–368.

    Article  Google Scholar 

  • Rashid A., Siddiqui A.W. & Reinert J. 1982. Subcellular aspects of origin and structure of pollen embryos of Nicotiana. Protoplasma 113: 202–208.

    Article  Google Scholar 

  • Rasmussen S.W. 1976. The meiotic prophase in Bombyx mori females analyzed by three-dimensional reconstructions of synaptonemal complexes. Chromosoma 54: 245–293.

    Article  PubMed  CAS  Google Scholar 

  • Risso-Pascotto C., Pagliarini M.S. & Valle C.B. 2009. Chromosome number and microsporogenesis of two accessions of Brachiaria dura Stapf (Poaceae). Biota Neotropica 9: 257–261.

    Article  Google Scholar 

  • Rodriguez-Garcia M.I., Majewska-Sawka A. & Fernandez M.C. 1988. Why do nucleus vacuoles appear in the prophasic nucleus of pollen mother cells? Facts and hypothesis, pp. 163–168. In: Cresti M., Gori P. & Pacini E. (eds) Sexual Reproduction in Higher Plants. Springer, Berlin, Heidelberg, New York, Tokyo.

    Google Scholar 

  • Sheffield E., Laird S. & Bell P.R. 1983. Ultrastructural aspects of sporogenesis in the apogamous fern Dryopteris borreri. J. Cell Sci. 63: 125–134.

    PubMed  CAS  Google Scholar 

  • Sidorchuk Y.V., Deineko E.V. & Shumnyi V.K. 2007. Peculiarities of cytomixis in pollen mother cells of transgenic tobacco plants (Nicotiana tabacum L.) with mutant phenotype. Cell Tissue Biol. 1: 570–576.

    Article  Google Scholar 

  • Sidorchuk Y.V., Dorogova N.V., Deineko E.V. & Shumnyi V.K. 2008. Premature cytokinesis in pollen mother cells of transgenic tobacco plants Nicotiana tabacum L. Tsitologiia 50: 447–451.

    PubMed  Google Scholar 

  • Singhal V.K. & Kumar P. 2008. Impact of cytomixis on meiosis, pollen viability and pollen size in wild populations of Himalayan poppy (Meconopsis aculeate Royle). J. Biosci. 33: 371–380.

    Article  PubMed  CAS  Google Scholar 

  • Wang X.Y., Guo G.Q., Nie X.W. & Zheng G.C. 1998. Cytochemical localization of cellulase activity in pollen mother cells of David lily during meiotic prophase I and its relation to secondar formation of plasmodesmata. Protoplasma 204: 128–138.

    Article  CAS  Google Scholar 

  • Williams E., Heslop-Harrison J. & Dickinson H.G. 1973. The activity of the nucleolus organising region and the origin of cytoplasmic nucleoloids in meiocytes of Lilium. Protoplasma 77: 79–93.

    Article  Google Scholar 

  • Worrall D., Hird D.L., Hodge R., Paul W., Draper J. & Scott R. 1992. Premature dissolution of the microsporocyte callose wall causes male sterility in transgenic tobacco. Plant Cell 4: 759–771.

    Article  PubMed  CAS  Google Scholar 

  • Yu C.H., Guo G.Q., Nie X.W. & Zheng G.C. 2004. Cytochemical localization of pectinase activity in pollen mother cells of tobacco during meiotic prophase I and its relation to the formation of secondary plasmodesmata and cytomictic channels. Acta Bot. Sinica 46: 1443–1453.

    Google Scholar 

  • Zagorskaya A.A., Deineko E.V., Sidorchuck Y.V. & Shumnyi V.K. 2001. Inheritance of altered flower morphology and kanamycin-resistance in transgenic tobacco plants. Russ. J. Genet. 37: 643–648.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey Mursalimov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mursalimov, S., Deineko, E. An ultrastructural study of microsporogenesis in tobacco line SR1. Biologia 67, 369–376 (2012). https://doi.org/10.2478/s11756-012-0005-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11756-012-0005-1

Key words

Navigation