Skip to main content
Log in

Overexpression of phytochelatin synthase (AtPCS) in rice for tolerance to cadmium stress

  • Section Cellular and Molecular Biology
  • Published:
Biologia Aims and scope Submit manuscript

Abstract

Phytoremediation is an important strategy adapted by plants to sequester and/or detoxify pollutants. Phytochelatins, a family of cysteine-rich thiol-reactive peptides, bind to various heavy metals and metalloids making them good candidates for phytoremediation. Phytochelatin synthase catalyses the final step in the biosynthesis of phytochelatins and can be used as a strategy to improve tolerance against heavy metals. In the present study, an AtPCS gene was overexpressed in rice following the in planta transformation approach. Stringent screening strategies were standardized to select putative transformants under a Cd stress of 125 μM at both seedling and plant levels. Molecular analysis by PCR in 18 tolerant plants confirmed the transgene integration and absence of Agrobacterium. Genomic Southern analysis further confirmed the integration of the T-DNA as a single copy. The stability of the T-DNA in the progeny of 5 selected T1 generation plants was confirmed by tolerance assay, molecular characterization and biochemical analysis for the reduced glutathione, phytochelatin content and lipid peroxidation. This strategy is discussed as a potential mechanism to enhance the tolerance of rice plants to Cd stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DTNB:

5,5′-dithio-bis(2-nitrobenzoic acid)

FW:

fresh weight

GSH:

reduced glutathione

MDA:

malondialdehyde

PC:

phytochelatin

PCS:

phytochelatin synthase

TBA:

thiobarbituric acid

TBARS:

2-thiobarbituric acid reactive substances

TCA:

trichloroacetic acid

WT:

wild type

WTC:

non-treated wild type control

WTT:

wild type treated

References

  • Awaji S.M., Nagaveni V., Prashantkumar S.H., Madhvi D.N., Sashidhar V.R. & Sreevathsa R. 2010. Simple yet stringent screening methodologies for evaluation of putative transformants for abiotic stress tolerance: salt and cadmium stress as paradigm. Physiol. Mol. Biol. Plants 16: 115–121.

    Article  CAS  Google Scholar 

  • Cai Y., Lin L., Cheng W., Zhang G. & Wu F. 2010. Genotypic dependent effect of exogenous glutathione on Cd-induced changes in cadmium and mineral uptake and accumulation in rice seedlings (Oryza sativa). Plant Soil Environ. 56: 516–525.

    CAS  Google Scholar 

  • Chamseddine M., Wided B.A., Guy H., Chaboute M.E. & Fatma J. 2009. Cadmium and copper induction of oxidative stress and antioxidative response in tomato (Solanum lycopersicon) leaves. Plant Growth Regul. 57: 89–99.

    Article  CAS  Google Scholar 

  • Cheng M., Jarret R.L., Li Z., Xing A. & Demski J.W. 1996. Production of fertile transgenic peanut (Arachis hypogeae L.) plants using Agrobacterium tumefaciens. Plant Cell Rep. 15: 653–657.

    Article  CAS  Google Scholar 

  • Cobbett C.S., May M.J., Howden R. & Rolls B. 1998. The glutathione deficient, cadmium-sensitive mutant, cad2-1, of Arabidopsis thaliana is deficient in Γ-glutamylcysteine synthetase. Plant J. 16: 73–78.

    Article  PubMed  CAS  Google Scholar 

  • Cobbett C. & Meagher R. 2002. Phytoremediation and the Arabidopsis proteome, pp 1–22. In: Somerville, C. (ed.) Arabidopsis, Cold Spring Harbor Laboratory Press, Cold Spring Harbor Laboratory.

  • de Knecht J.A., Koevoets P.L.M., Verkleij J.A.C & Ernst W.H.O. 1992. Evidence against a role for phytochelatins in naturally selected increased cadmium tolerance in Silene vulgaris (Moench) Garcke. New Phytol. 122: 681–688.

    Article  Google Scholar 

  • de Knecht J.A., van Dillen M., Koevoets P.L.M., Schat H., Verkleij J.A.C. & Ernst W.H.O. 1994 Phytochelatins in cadmium-sensitive and cadmium-tolerant Silene vulgaris. Plant Physiol. 104: 255–261.

    PubMed  Google Scholar 

  • De Vos C.H.R., Vonk M.J., Vooijs R. & Schat H. 1992. Glutathione depletion due to copper-induced phytochelatin synthesis causes oxidative stress in Silele cucubalus. Plant Physiol. 98: 853–858.

    Article  PubMed  Google Scholar 

  • Doyle J.J. & Doyle J.L. 1990. Isolation of plant DNA from fresh tissue. Focus 12: 13–15.

    Google Scholar 

  • Drazkiewicz M., Skorzynska-Polit E. & Krupa Z. 2007. The redox state and activity of superoxide dismutase classes in Arabidopsis thaliana under cadmium or copper stress. Chemosphere 67: 188–193.

    Article  PubMed  CAS  Google Scholar 

  • Ellman G.L. 1959. Tissue sulfhydryl groups. Arch. Biochem. Biophys. 82: 70–77.

    Article  PubMed  CAS  Google Scholar 

  • Fan L., Zheng S. & Wang X. 1997. Antisense suppression of phospholipase Dα retards abscisic acid and ethylene-promoted senescence of post harvest Arabidopsis leaves. Plant Cell 9: 2183–2196.

    Article  PubMed  CAS  Google Scholar 

  • Gallego S.M., Benavides M.P. & Tomaro M.L. 1996. Effect of heavy metal ion excess on sunflower leaves: evidence for involvement of oxidative stress. Plant Sci. 121: 151–159.

    Article  CAS  Google Scholar 

  • Gasic K. & Korban S.S. 2007. Transgenic Indian mustard (Brassica juncea) plants expressing an Arabidopsis phytochelatin synthase (AtPCS1) exhibit enhanced As and Cd tolerance. Plant Mol. Biol. 64: 361–369.

    Article  PubMed  CAS  Google Scholar 

  • Ge C., Wang Z., Wan D.Z., Ding Y., Wang Y., Shang Q. & Luo S. 2009. Proteomic study for responses to cadmium stress in rice seedlings. Rice Sci. 16: 33–44.

    Article  Google Scholar 

  • Gisbert C., Ros R., De Haro A., Walker D., Pilar Bernal M., Serrano R., Navarro-Avino J.A. 2003. Plant genetically modified that accumulates Pb is especially promising for phytoremediation. Biochem. Biophys. Res. Commun. 303: 440–445.

    Article  PubMed  CAS  Google Scholar 

  • Grill E., Winnacker E.L. & Zenk M.H. 1985. Phytochelatins: the principal heavy-metal complexing peptides of higher plants. Science 230: 674–676.

    Article  PubMed  CAS  Google Scholar 

  • Guo J., Dai X., Xu W. & Ma M. 2008. Overexpressing GSH1 and AsPCS1 simultaneously increases the tolerance and accumulation of cadmium and arsenic in Arabidopsis thaliana. Chemosphere 72: 1020–1026.

    Article  PubMed  CAS  Google Scholar 

  • Gupta S.C. & Goldsbrough P.B. 1991. Phytochelatin accumulation and cadmium tolerance in selected tomato cell lines. Plant Physiol. 97: 306–312.

    Article  PubMed  CAS  Google Scholar 

  • He J.Y., Zhu C., Ren Y.F., Yan Y.P., Cheng C., Jiang D.A. & Sun Z.X. 2008. Uptake, subcellular distribution, and chemical forms of cadmium in wild-type and mutant rice. Pedosphere 18: 371–377.

    Article  CAS  Google Scholar 

  • Hegedüs A. Erdei S. & Horváth G. 2001. Comparative studies of H2O2 detoxifying enzymes in green and greening barley seedlings under cadmium stress. Plant Sci. 1160: 1085–1093.

    Article  PubMed  Google Scholar 

  • Hiscox J.D. & Israelstam G.F.A. 1979. Method for extraction of chlorophyll from leaf tissues without maceration. Can. J. Bot. 57: 1332–1334.

    Article  CAS  Google Scholar 

  • Hodges D.M. Delong J.M., Forney C.F. & Prange R.K. 1999. Improving the thiobarbitric acid reactive substance assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta 207: 604–611.

    Article  CAS  Google Scholar 

  • Howden R., Anderson C.R., Goldsbrough P.B. & Cobbett C.S. 1995. A cadmium-sensitive, glutathione-deficient mutant of Arabidopsis thaliana. Plant Physiol. 107: 1067–1073.

    Article  PubMed  CAS  Google Scholar 

  • Ike A., Sriprang R., Ono H., Murooka Y. & Yamashita M. 2007. Bioremediation of cadmium contaminated soil using symbiosis between leguminous plant and recombinant rhizobia with the MTL4 and the PCS genes. Chemosphere 66: 1670–1676.

    Article  PubMed  CAS  Google Scholar 

  • Keshamma E., Rohini S., Rao K.S., Madhusudhan B. & Udayakumar M. 2008. Tissue culture-independent in planta transformation strategy: an Agrobacterium tumefaciens-mediated gene transfer method to overcome recalcitrance in cotton (Gossypium hirsutum L.). J. Cott. Sci. 12: 264–272.

    CAS  Google Scholar 

  • Kumar S., Singla Pareek S.L, Reddy M.K. & Sopory S.K. 2003. Glutathione: biosynthesis, homeostasis and its role in abiotic stresses. J. Plant Biol. 30: 179–187.

    Google Scholar 

  • Li Y., Dhankher O., Carreira L., Lee D., Chen A., Schroeder J.I., Balish R.S. & Meagher R.B. 2004. Overexpression of phytochelatin synthase in Arabidopsis leads to enhanced arsenic tolerance and cadmium hypersensitivity. Plant Cell Physiol. 45: 1787–1797.

    Article  PubMed  CAS  Google Scholar 

  • Liu J.G., Liang J.S., Li K.Q., Zhang Z.J., Yu B.Y., Lu X.L., Yang J.C. & Zhu Q.S. 2003. Correlations between cadmium and mineral nutrients in absorption and accumulation in various genotypes of rice under cadmium stress. Chemosphere 52: 1467–1473.

    Article  PubMed  CAS  Google Scholar 

  • Manoj Kumar A., Reddy K.N., Sreevathsa R., Ganeshan G. & Udayakumar M. 2009. Towards crop improvement in bell pepper (Capsicum annuum L.) by a tissue culture independent Agrobacterium mediated in planta approach. Sci. Hortic. 119: 362–370.

    Article  Google Scholar 

  • Meagher R.B. 2000. Phytoremediation of toxic elemental and organic pollutants. Curr. Opin. Plant Biol. 3: 153–162.

    Article  PubMed  CAS  Google Scholar 

  • Mohan B.S. & Hosetti B.B. 1997. Potential phytotoxicity of lead and cadmium to Lemna minor grown in sewage stabilization ponds. Environ. Pollut. 98: 233–238.

    Article  CAS  Google Scholar 

  • Pagliano C., Raviolo M., Vecchia F.D., Gabbrielli R., Gonnelli C., Rascio N., Barbato R. & Rocca N.L. 2006. Evidence for PSII donorside damage and photoinhibition induced by cadmium treatment on rice (Oryza sativa L.). J. Photochem. Photobiol. B Biol. 84: 70–78.

    Article  CAS  Google Scholar 

  • Panda S.K. 2007. Chromium-mediated oxidative stress and ultrastructural changes in root cells of developing rice seedlings. J. Plant Physiol. 164: 1419–1428.

    Article  PubMed  CAS  Google Scholar 

  • Prasad M.N.V., Malec P., Waloszek A., Bojko M. & Strzalka K. 2001. Physiological responses of Lemna trisulca L. (duckweed) to cadmium and copper bioaccumulation. Plant Sci. 161: 881–889.

    Article  CAS  Google Scholar 

  • Rao K.S., Sreevathsa R., Sharma P.D., Keshamma E. & Udaya Kumar M. 2008. In planta transformation of pigeon pea: a method to overcome recalcitrancy of the crop to regeneration in vitro. Physiol. Mol. Biol. Plants 14: 321–328.

    Article  CAS  Google Scholar 

  • Rascio N., Vecchia F.D., Rocca N.L., Barbato R., Pagliano C., Raviolo M., Gonnelli C. & Gabbrielli R. 2008. Metal accumulation and damage in rice (cv. Vialone nano) seedlings exposed to cadmium. Environ. Exp. Bot. 62: 267–278.

    Article  CAS  Google Scholar 

  • Salt D.E. & Rauser W.E. 1995. MgATP-dependent transport of phytochelatins across the tonoplast of oat roots. Plant Physiol. 107: 1293–1301.

    PubMed  CAS  Google Scholar 

  • Sambrook J. & Russel D.W. 2001. Molecular Cloning, A Laboratory Manual, 3rd Ed, Vol. 1–3, Cold Spring Harbor Laboratory Press, Cold Spring Harbor Laboratory.

  • Shah K., Kumar R.G., Verma S. & Dubey R.S. 2001. Effect of cadmium on lipid peroxidation, superoxide anion generation and activities of antioxidant enzymes in growing rice seedlings. Plant Sci. 161: 1135–1144.

    Article  CAS  Google Scholar 

  • Singla-Pareek S.L., Reddy M.K. & Sopory S.K. 2003. Genetic engineering of the glyoxalase pathway in tobacco leads to enhanced salinity tolerance. Proc. Natl. Acad. Sci. USA 100: 14672–14677.

    Article  PubMed  CAS  Google Scholar 

  • Singla-Pareek S.L., Yadav S.K., Pareek A., Reddy M.K. & Sopory S.K. 2006. Transgenic tobacco overexpressing glyoxalase pathway enzymes grow and set viable seeds in zinc-spiked soils. Plant Physiol. 140: 613–623.

    Article  PubMed  CAS  Google Scholar 

  • Saumya S., Sreevathsa R., Nagaveni V., Ravikumar K. & Sashidhar V.R. 2009. Genetic engineering of rice for heavy metal stress tolerance: initial physiological screening of diverse rice genotypes and stringent evaluation test (SET) of putative transformants. J. Plant Sci. Res. 25: 21–37.

    Google Scholar 

  • Speiser D., Abrahamson S.L., Banuelos G. & Ow D.W. 1992. Brassica juncea produces a phytochelatin-cadmium-sulfide complex. Plant Physiol. 99: 817–821.

    Article  PubMed  CAS  Google Scholar 

  • Sriprang R., Hayashi M., Ono H., Takagi M., Hirata K. & Murooka Y. 2003. Enhanced accumulation of Cd2+ by a Mesorhizobium sp. transformed with a gene from Arabidopsis thaliana coding for phytochelatin synthase. Appl. Environ. Microbiol. 69: 1791–1796.

    Article  PubMed  Google Scholar 

  • Steffens J.C. 1990. The heavy metal-binding peptides of plants. Annu. Rev. Plant. Physiol. Plant Mol. Biol. 41: 553–575.

    Article  CAS  Google Scholar 

  • Vatamaniuk O.K., Mari S., Lu Y.P. & Rea P.A. 2000. Mechanism of heavy metal ion activation of phytochelatin synthase. J. Biol. Chem. 275: 31451–31459.

    Article  PubMed  CAS  Google Scholar 

  • Verma D., Singla-Pareek S.L., Divya R., Reddy M.K. & Sopory S.K. 2007. Functional validation of a novel isoform of Na+ /H+ antiporter from Pennisetum glaucum for enhancing salinity tolerance in rice. J. Biosci. 32: 621–628.

    Article  PubMed  CAS  Google Scholar 

  • Verslues P.E., Agarwal M., Agarwal S.K., Zhu J. & Zhu J.K. 2006. Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status. Plant J. 45: 523–539.

    Article  PubMed  CAS  Google Scholar 

  • Weckx J.E.J. & Clijsters H.M.M. 1997. Zn phytotoxicity induces oxidative stress in primary leaves of Phaseolus vulgaris. Plant Physiol. Biochem. 35: 405–410.

    CAS  Google Scholar 

  • Winans S.C., Kerstetter R.A. & Nester E.W. 1988. Transcriptional regulation of the virA and virG genes of Agrobacterium tumefaciens. J. Bacteriol. 170: 4047–4054.

    PubMed  CAS  Google Scholar 

  • Wojas S., Clemens S., Hennig J., Sklodowska A., Kopera E., Schat H., Bal W. & Antosiewicz D.M. 2008. Overexpression of phytochelatin synthase in tobacco: distinctive effects of At-PCS1 and CePCS genes on plant response to cadmium. J. Exp. Bot. 59: 2205–2219.

    Article  PubMed  CAS  Google Scholar 

  • Zenk M.H. 1996. Heavy metal detoxification in higher plants: a review. Gene 179: 21–30.

    Article  PubMed  CAS  Google Scholar 

  • Zhang C.H. & Ge Y. 2008. Response of glutathione and glutathione S-transferase in rice seedlings exposed to cadmium stress. Rice Sci. 15: 73–76.

    Article  Google Scholar 

  • Zhu Y.L., Pilon-Smits E.A.H., Tarun A.S., Weber S.U., Jouanin L. & Terry N. 1999. Cadmium tolerance and accumulation in indian mustard is enhanced by overexpressing γ-glutamylcysteine synthetase. Plant Physiol. 121: 1169–1177.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rohini Sreevathsa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Venkataramaiah, N., Vudayagiri Ramakrishna, S. & Sreevathsa, R. Overexpression of phytochelatin synthase (AtPCS) in rice for tolerance to cadmium stress. Biologia 66, 1060–1073 (2011). https://doi.org/10.2478/s11756-011-0135-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11756-011-0135-x

Key words

Navigation