Skip to main content
Log in

Growth and viability of mycorrhizal extraradical mycelia associated with three temperate orchid species

  • Section Botany
  • Published:
Biologia Aims and scope Submit manuscript

Abstract

Growth and enzymatic activities of extraradical mycelia (ERM) of native mycorrhizal symbionts associated with three orchid species, Dactylorhiza fuchsii, D. majalis and Platanthera bifolia, were studied. ERM extracted from the mycorrhizosphere of these species showed features typical for fungi that form orchid mycorrhiza. In the first pot experiment, three different treatments were applied on tubers of D. fuchsii transplanted from a natural site: control (no specific treatment), reinoculated (surface-sterilized tubers reinoculated with mycorrhizal fungi-colonised roots), and benomyl (nonsterilized tubers treated with fungicide). However, no significant differences in ERM growth and intensity of root mycorrhizal colonisation at harvest were observed among these treatments. ERM associated with reinoculated D. fuchsii plants showed significantly higher alkaline phosphatase (ALP) enzymatic activity at week 36 than at week 24, but no differences were observed for NADH diaphorase activity. Benomyl application significantly reduced ALP activity in comparison with reinoculated plants at week 36. In the second experiment, plants of all three species were either untreated (control), or repeatedly treated with benomyl. Similarly to the results of the first experiment, benomyl application did not reduce the ERM growth of mycorrhizal symbionts associated with D. majalis and D. fuchsii. The low ERM growth associated with benomyl-treated P. bifolia was probably caused by poor root system development in this treatment. Significantly higher mycorrhizal colonisation was found for D. fuchsii compared to P. bifolia in control treatments at the end of cultivation. The ERM of native symbionts of the three orchid species studied seemed to have a different growth pattern over time and responded differently to fungicide application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ALP:

alkaline phosphatase

CITES:

Convention on International Trade in Endangered Species of Wild Fauna and Flora

ERM:

extraradical mycelium

INT:

iodonitrotetrazolium chloride

NADH:

reduced form of nicotinamide adenine dinucleotide

OM:

orchid mycorrhiza

SE:

standard error

References

  • Alexander C. & Hadley G. 1984. The effect of mycorrhizal infection of Goodyera repens and its control by fungicide. New Phytol. 97: 391–400.

    Article  CAS  Google Scholar 

  • Alexander C. & Hadley G. 1985. Carbon movement between host and mycorrhizal endophyte during the development of the orchid Goodyera repens Br. New Phytol. 101: 657–665.

    Article  Google Scholar 

  • Andersen T.F. 1996. A comparative taxonomic study of Rhizoctonia sensu lato employing morphological, ultrastructural and molecular methods. Mycol. Res. 100: 1117–1128.

    Article  Google Scholar 

  • Baláž M. & Vosátka M. 2001. A novel inserted membrane technique for studies of mycorrhizal extraradical mycelium. Mycorrhiza 11: 291–296.

    Article  CAS  Google Scholar 

  • Bayman P., Gonzáles E.J., Fumero J.J. & Tremblay R.L. 2002. Are fungi necessary? How fungicides affect growth and survival of the orchid Lephantes rupestris in the field. J. Ecol. 90: 1002–1008.

    Article  CAS  Google Scholar 

  • Beau C. 1913. Sur les rapports entrée la tuberisation et l’infestation des racines par des champignons endophytes au cours de développement du Spiranthes autumnalis. Compte Rendu Hebdomadaire des Séances de l’Académie des Sciences Paris 157: 512–515.

    Google Scholar 

  • Bernard N. 1909. L’evolution dans la symbiose des orchideés et leur champignons commensaux. Annalles des Sciences Naturalles, Paris, 9. ser. 14: 1–196.

    Google Scholar 

  • Bidartondo M.I, Burghardt B., Gebauer G., Bruns T.D. & Read D.J. 2004. Changing partners in the dark: isotopic and molecular evidence of ectomycorrhizal liaisons between forest orchids and trees. Proc. Royal Soc. London Series B 271: 1799–1806.

    Article  CAS  Google Scholar 

  • Boosalis M.G. & Scharen A.L. 1959. Methods for microscopic detection of Abhanomyces euteiches and Rhizoctonia solani associated with plant debris. Phytopathol. 49: 192–198.

    Google Scholar 

  • Burgeff H. 1909. Die Wurzelpilze der Orchideen, ihre Kultur und ihre Lebemn in der Pflanze. Gustav Fischer, Jena.

    Google Scholar 

  • Burgeff H. 1936. Samenkeimung der Orchideen. Gustav Fischer, Jena.

    Google Scholar 

  • Cullings K.W., Szaro T.M. & Bruns T.D. 1996. Evolution of extreme specialization within a lineage of ectomycorrhizal epiparasites. Nature 379: 63–66.

    Article  CAS  Google Scholar 

  • Currah R.S., Sigler L. & Hambleton S. 1987. New records and taxa of fungi from the mycorrhizae of terrestrial orchids of Alberta. Can. J. Bot. 65:2473–2482.

    Article  Google Scholar 

  • Currah R.S., Smreciu E.A. & Hambleton S. 1990. Mycorrhizae and mycorrhizal fungi of boreal species of Platanthera and Coeloglossum (Orchidaceae). Can. J. Bot. 68: 1171–1181.

    Article  Google Scholar 

  • Currah R.S., Zelmer C.D., Hambleton S. & Richardson K.A. 1997. Fungi from orchid mycorrhizas, pp. 117–170. In: Arditti J. & Pridgeon A.M. (eds), Orchid Biology: Review and Perspectives, VII. Kluwer Academic Publications, Dordrecht.

    Google Scholar 

  • Fitter A.H. & Nichols R. 1988. The use of benomyl to control infection by vesicular-arbuscular mycorrhizal fungi. New Phytol. 110: 201–206.

    Article  CAS  Google Scholar 

  • Fuchs A. & Ziegenspeck H. 1927. Entwicklung, Axen und Blätter einheimischer Orchideen, IV. Botanisches Archive 20: 275–422.

    Google Scholar 

  • Gardes M. & Bruns T.D. 1993. IST primers with enhanced specifity for basidiomycetes — application to the identification of mycorrhizae and rusts. Molec. Ecol. 2: 113–118.

    Article  CAS  Google Scholar 

  • Hadley G. 1984. Uptake of [14C] glucose by asymbiotic and mycorrhizal orchid protocorms. New Phytol. 96: 263–273.

    Article  Google Scholar 

  • Harnett D.C. & Wilson G.T. 1998. Mycorrhizae influence plant community structure and diversity in tallgrass prairie. Ecology: 1187–1195.

  • Holub J. & Procházka F. 2000. Red list of vascular plants of the Czech Republic. Preslia 72: 187–230.

    Google Scholar 

  • Jabaji-Hare S.H. & Kendrick W.B.1987. Response of an endomycorrhizal fungus in Allium porrum L. to different concentrations of the systemic fungicides, Metalaxyl (Ridomil) and Fosetal-al (Aliette). Soil Biol. Biochem. 19: 95–99.

    Article  CAS  Google Scholar 

  • Jurčák J. 2003. Mycorrhizal conditions and anatomical study of underground organs of chosen species from the family Orchidaceae. Assoc. Prof. Thesis, Palacký University, Olomouc. (In Czech)

    Google Scholar 

  • Kahiluoto H., Ketoja E. & Vestberg M. 2000a. Creation of a non-mycorrhizal control for a bioassay of AM effectiveness, 1. Comparison of methods. Mycorrhiza 9: 241–258.

    Article  Google Scholar 

  • Kahiluoto H., Ketoja E. & Vestberg M. 2000b. Creation of a non-mycorrhizal control for a bioassay of AM effectiveness, 2. Benomyl application and soil sampling time. Mycorrhiza 9: 259–270.

    Article  Google Scholar 

  • Kjøller R. & Rosendahl S. 2000. Detection of arbuscular mycorrhizal fungi (Glomales) in roots by nested PCR and SSCP (single strand conformation polymorphism). Plant Soil 226: 189–196.

    Article  Google Scholar 

  • Kristiansen K.A., Taylor D. L., Kjøller R., Rasmussen H.N. & Rosedahl S. 2001. Identification of mycorrhizal fungi from single pelotons of D. majalis (Orchidaceae) using single strand conformation polymorphism and mitochondrial ribosomal large subunit DNA sequences. Molec. Ecol. 10: 2089–2093.

    Article  CAS  Google Scholar 

  • Látalová K., Knotová, K. & Baláž M. 2003 The effects of fungicides on extraradical mycelium of orchid mycorrhiza, pp. 154–157. In: Plant Physiology Conference of Ph.D. Students and Young Scientists; Book of Abstracts, Brno, Mendel University of Agriculture and Forestry, Faculty of Agronomy and Masaryk University, Faculty of Science.

  • Látr A., Čuříková M., Baláž M. & Jurčák J. 2008. Mycorrhizas of Cephalanthera longifolia and Dactylorhiza majalis, two terrestrial orchids. Ann. Bot. Fen. 45: 281–289.

    Google Scholar 

  • Manninen A.M., Laatikainen T. & Holopainen T. 1998. Condition of Scots pine fine roots and mycorrhiza after fungicide application and low-level exposure in a 2-year field experiment. Trees 12: 347–355.

    Article  Google Scholar 

  • Menge J.A. 1982. Effect of soil fumigants and fungicides on vesicular-arbuscular fungi. Phytopathol. 72: 1125–1132.

    Google Scholar 

  • Merryweather J. & Fitter A. 1996. Phosphorus nutrition of an obligately mycorrhizal plant treated with the fungicide benomyl in the field. New Phytol. 132: 307–311.

    Article  CAS  Google Scholar 

  • Mitchell R.B. 1989. Growing hardy orchids from seeds at Kew. The Plantsman 11: 152–169.

    Google Scholar 

  • Němec S. 1980. Effects of 11 fungicides on endomycorrhizal development in sour orange. Can. J. Bot. 58: 522–526.

    Google Scholar 

  • O’Connor P. J., Smith S.E. & Smith E.A. 2002. Arbuscular mycorrhizas influence plant diversity and community structure in semi-arid herbland. New Phytol. 154: 209–218.

    Article  Google Scholar 

  • Phillips J. M. & Hayman D.S. 1970. Improved procedures for cleaning roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans. British Mycol. Soc. 55: 158–161.

    Google Scholar 

  • Rasmussen H. 2002. Recent developments in the study of orchid mycorrhiza. Plant Soil 244: 149–163.

    Article  CAS  Google Scholar 

  • Rasmussen H. & Whigham D. 2002. Phenology of roots and mycorrhiza in five orchid species differing in phototrophic strategy. New Phytol. 154: 797–807.

    Article  Google Scholar 

  • Selosse M.A., Faccio A., Scappaticci G. & Bonfante P. 2004: Chlorophyllous and Achlorophyllous Specimens of Epipactis microphylla (Neottieae, Orchidaceae) Are Associated with Ectomycorrhizal Septomycetes, including Truffles. Microb. Ecol. 47: 416–426.

    Article  PubMed  CAS  Google Scholar 

  • Smith S.E. 1966. Physiology and ecology of orchid mycorrhizal fungi with reference to seedling nutrition. New Phytol. 65: 488–499.

    Article  Google Scholar 

  • Sylvia D.M. 1988. Activity of external hyphae of vesiculararbuscular mycorrhizal fungi. Soil Biol. Biochem. 20: 39–43.

    Article  Google Scholar 

  • Teste F., Karst J., Jones M., Simard S. & Durall D. 2006. Method to control ectomycorhizal colonization: effectivness of chemical and physical barriers. Mycorrhiza 17: 51–65.

    Article  PubMed  Google Scholar 

  • Tisserant B., Gianinazzi-Pearson V., Gianinazzi S. & Gollotee A. 1993. In planta histochemical staining of fungal alkaline phosphatase activity for analysis of efficient arbuscular mycorrhizal infections. Mycol. Res. 97: 245–250.

    Article  CAS  Google Scholar 

  • Trappe J.M., Molina R. & Castellano M. 1984. Reaction of mycorrhizal fungi and mycorrhizal formation to pesticides. Ann. Rev. Phytopatol. 22: 331–359.

    Article  CAS  Google Scholar 

  • Tu C.C. & Kimbrough J.W. 1975. Morphology, development and cytochemistry of the hyphae and sclerotia of species in the Rhizoctonia complex. Can. J. Bot. 53: 2282–2296.

    Article  Google Scholar 

  • Warcup J.H. & Talbot P.H.B. 1967. Perfect states of Rhizoctonias associated with orchids. New Phytol. 66: 631–641.

    Article  Google Scholar 

  • Warcup J.H. 1981. The mycorrhizal relationship of Australian orchids. New Phytol. 87: 371–381.

    Article  Google Scholar 

  • Wilson G.W.T., Hartnett D.C., Smith M.D. & Kobbeman K. 2001. Effects of mycorrhizae on growth and demography of tallgrass praire forbs. Amer. J. Bot. 88: 1452–1457.

    Article  Google Scholar 

  • Yoder J.A., Zettler L.W. & Stewart L.S. 2000. Water requirements of terrestrial and endophytic orchid seeds and seedlings and evidence for water uptake by means of mycotrophy. Plant Sci. 156: 145–150.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martina Čuříková.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Čuříková, M., Látr, A. & Vosátka, M. Growth and viability of mycorrhizal extraradical mycelia associated with three temperate orchid species. Biologia 64, 63–68 (2009). https://doi.org/10.2478/s11756-009-0001-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11756-009-0001-2

Key words

Navigation