Skip to main content
Log in

Rhizofiltration potential of Arundo donax for cadmium and zinc removal from contaminated wastewater

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

The main aim of the presented work was to design and characterize the rhizofiltration system comprised of giant reed plants (Arundo donax L.), as species with phytoremediation potential, for the removal of cadmium as a toxic metal and zinc as an important microelement from model solutions spiked with radionuclides 109Cd and 65Zn. The possibility of effective cadmium and zinc rhizofiltration by the root system of giant reed plants under continuous flow conditions to achieve complete decontamination was confirmed. The highest 109Cd and 65Zn specific radioactivity (Bq g−1; dry mass) was found in case of plants located near the input of the solution into the system, whereby the radioactivity in the plants decreased in the direction of the solution flow within the system. On the other hand, gradual increasing of the concentration ratio [Cd]shoot: [Cd]root within this horizontal plants location was observed. Individual experiments showed that the efficiency of cadmium rhizofiltration decreased in the order of model solutions: synthetic wastewater (χ = 505 μS cm−1), deionized water (χ = 29.6 μS cm−1), 100 % Hoagland medium (χ = 1675 μS cm−1). The same results were also found in case of zinc rhizofiltration. For the description of cadmium and zinc rhizofiltration processes, the kinetic mathematical models widely applied for sorption processes under continuous flow conditions were successfully used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abhilash, P. C., Pandey, V. C., Srivastava, P., Rakesh, P. S., Chandran, S., Singh, N., & Thomas, A. P. (2009). Phytofiltration of cadmium from water by Limnocharis flava (L.) Buchenau grown in free-floating culture system. Journal of Hazardous Materials, 170, 791–797. DOI: 10.1016/j.jhazmat.2009.05.035.

    Article  CAS  Google Scholar 

  • Aksu, Z. (2005). Application of biosorption for the removal of organic pollutants: a review. Process Biochemistry, 40, 997–1026. DOI: 10.1016/j.procbio.2004.04.008.

    Article  CAS  Google Scholar 

  • Ali, H., Khan, E., & Sajad, M. A. (2013). Phytoremediation of heavy metals-Concepts and applications. Chemosphere, 91, 869–881. DOI: 10.1016/j.chemosphere.2013.01.075.

    Article  CAS  Google Scholar 

  • Alshaal, T., Domokos-Szabolcsy, É., Márton, L., Czakó, M., Kátai, J., Balogh, P., Elhawat, N., El-Ramady, H., & Fári, M. (2013). Phytoremediation of bauxite-derived red mud by giant reed. Environmental Chemistry Letters, 11, 295–302. DOI: 10.1007/s10311-013-0406-6.

    Article  CAS  Google Scholar 

  • Angelini, L. G., Ceccarini, L., Nassi o Di Nasso, N., & Bonari, E. (2009). Comparison of Arundo donax L. and Miscanthus × giganteus in a long-term field experiment in Central Italy: Analysis of productive characteristics and energy balance. Biomass & Bioenergy, 33, 635–643. DOI: 10.1016/j.biombioe.2008.10.005.

    Article  Google Scholar 

  • Ashraf, M., Ozturk, M., & Ahmad, M. S. A. (Eds.) (2010). Plant adaptation and phytoremediation. Berlin/Heidelberg, Germany: Springer. DOI: 10.1007/978-90-481-9370-7.

    Google Scholar 

  • ATSDR (Agency for Toxic Substances and Disease Registry) (1995). Toxicological profile for zinc. Atlanta, GA, USA: Public Health Service, U.S. Department of Health and Human Services.

    Google Scholar 

  • ATSDR (Agency for Toxic Substances and Disease Registry) (2013). Priority list of hazardous substances. Atlanta, GA, USA: U.S. Department of Health and Human Services.

    Google Scholar 

  • Bohart, G. S., & Adams, E. Q. (1920). Some aspects of the behavior of charcoal with respect to chlorine. Journal of the American Chemical Society, 42, 523–544. DOI: 10.1021/ja01448a018.

    Article  CAS  Google Scholar 

  • Bonanno, G. (2012). Arundo donax as a potential biomonitor of trace element contamination in water and sediment. Ecotoxicology and Environmental Safety, 80, 20–27. DOI: 10.1016/j.ecoenv.2012.02.005.

    Article  CAS  Google Scholar 

  • Bracklow, U., Drews, A., Vocks, M., & Kraume, M. (2007). Comparison of nutrients degradation in small scale membrane bioreactors fed with synthetic/domestic wastewater. Journal of Hazardous Materials, 144, 620–626. DOI: 10.1016/j.jhazmat.2007.01.085.

    Article  CAS  Google Scholar 

  • Ceotto, E., & Di Candilo, M. (2010). Shoot cuttings propagation of giant reed (Arundo donax L.) in water and moist soil: The path forward? Biomass & Bioenergy, 34, 1614–1623. DOI: 10.1016/j.biombioe.2010.06.002.

    Article  Google Scholar 

  • Charumathi, D., & Das, N. (2012). Packed bed column studies for the removal of synthetic dyes from textile wastewater using immobilised dead C. tropicalis. Desalination, 285, 22–30. DOI: 10.1016/j.desal.2011.09.023.

    Article  CAS  Google Scholar 

  • Clark, R. M. (1987). Evaluating the cost and performance of field-scale granular activated carbon systems. Environmental Science & Technology, 21, 573–580. DOI: 10.1021/es00160a008.

    Article  CAS  Google Scholar 

  • Dushenkov, V., Kumar, P. B. A. N., Motto, H., & Raskin, I. (1995). Rhizofiltration: the use of plants to remove heavy metals from aqueous streams. Environmental Science & Technology, 29, 1239–1245. DOI: 10.1021/es00005a015.

    Article  CAS  Google Scholar 

  • Dushenkov, S., Vasudev, D., Kapulnik, Y., Gleba, D., Fleisher, D., Ting, K. C., & Ensley, B. (1997). Removal of uranium from water using terrestrial plants. Environmental Science & Technology, 31, 3468–3474. DOI: 10.1021/es970220l.

    Article  CAS  Google Scholar 

  • Dushenkov, S., & Kapulnik, Y. (2000). Phytofiltration of metals. In I. Raskin, & B. D. Ensley (Eds.), Phytoremediation of toxic metals: Using plants to clean up the environment (pp. 89–106). New York, NY, USA: Wiley.

    Google Scholar 

  • Elhawat, N., Alshaal, T., Domokos-Szabolcsy, É., El-Ramady, H., Márton, L., Czakó, M., Kátai, J., Balogh, P., Sztrik, A., Molnár, M., Popp, J., & Fári, M. G. (2014). Phytoaccumulation potentials of two biotechnologically propagated ecotypes of Arundo donax in copper-contaminated synthetic wastewater. Environmental Science and Pollution Research, in press. DOI: 10.1007/s11356-014-2736-8.

    Google Scholar 

  • EPA (Environmental Protection Agency) (2005). Toxicological review of zinc and compounds. Washington, DC, USA: U.S. Environmental Protection Agency. (EPA/635/R-05/002)

    Google Scholar 

  • EPA (Environmental Protection Agency) (2011). Consumer factsheet on: Cadmium, National primary drinking water regulations. Washington, DC, USA: U.S. Environmental Protection Agency. (EPA/816/F-01/007)

    Google Scholar 

  • Fu, F. L., & Wang, Q. (2011). Removal of heavy metal ions from wastewaters: A review. Journal of Environmental Management, 92, 407–418. DOI: 10.1016/j.jenvman.2010.11.011.

    Article  CAS  Google Scholar 

  • Gustafsson, J. P. (2013). Visual MINTEQ [computer software]. Stockholm, Sweden: KTH.

    Google Scholar 

  • Hassan, Z., & Aarts, M. G. M. (2011). Opportunities and feasibilities for biotechnological improvement of Zn, Cd or Ni tolerance and accumulation in plants. Environmental and Experimental Botany, 72, 53–63. DOI: 10.1016/j.envexpbot.2010.04.003.

    Article  CAS  Google Scholar 

  • Hegazy, A. K., Abdel-Ghani, N. T., & El-Chaghaby, G. A. (2011). Phytoremediation of industrial wastewater potentiality by Typha domingensis. International Journal of Environmental Science and Technology, 8, 639–648. DOI: 10.1007/bf03326249.

    Article  CAS  Google Scholar 

  • Hoagland, D. R. (1920). Optimum nutrient solutions for plants. Science, 52, 562–564. DOI: 10.1126/science.52.1354.562.

    Article  CAS  Google Scholar 

  • Horník, M., Šuňovská, A., Pipíška, M., Gubišová, M., Gubiš, J., & Augustín, J. (2011). Phytofiltration of Cd and Zn by roots of vascular plants: Effect of metals speciation. In Proceedings of International Conference Applied Natural Sciences 2011, October 5–7, 2011 (pp. 210–214). Častá-Papiernička, Slovakia: Faculty of Natural Sciences, UCM in Trnava.

    Google Scholar 

  • Horník, M., Šuňovská, A., Partelová, D., Pipíška, M., & Augustín, J. (2013). Continuous sorption of synthetic dyes on dried biomass of microalga Chlorella pyrenoidosa. Chemical Papers, 67, 254–264. DOI: 10.2478/s11696-012-0235-2.

    Article  Google Scholar 

  • IARC (International Agency for Research on Cancer) (1993). Cadmium and cadmium compounds. In IARC Monographs on the Evaluation of Carcinogenic Risks to Humans (Vol. 58, pp. 119–237). Lyon, France: IARC.

    Google Scholar 

  • Jabeen, R., Ahmad, A., & Iqbal, M. (2009). Phytoremediation of heavy metals: Physiological and molecular mechanisms. The Botanical Review, 75, 339–364. DOI: 10.1007/s12229-009-9036-x.

    Article  Google Scholar 

  • Mackova, M., Dowling, D., & Macek, T. (Eds.) (2006). Phytoremediation and rhizoremediation. Dordrecht, The Netherlands: Springer.

    Google Scholar 

  • Mantineo, M., D’Agosta, G. M., Copani, V., Patanč, C., & Cosentino, S. L. (2009). Biomass yield and energy balance of three perennial crops for energy use in the semi-arid Mediter ranean environment. Field Crops Research, 114, 204–213. DOI: 10.1016/j.fcr.2009.07.020.

    Article  Google Scholar 

  • Mavrogianopoulos, G., Vogli, V., & Kyritsis, S. (2002). Use of wastewater as a nutrient solution in a closed gravel hydroponic culture of giant reed (Arundo donax). Bioresource Technology, 82, 103–107. DOI: 10.1016/s0960-8524(01)00180-8.

    Article  CAS  Google Scholar 

  • Mehta, S. K., & Gaur, J. P. (2005). Use of algae for removing heavy metal ions from wastewater: Progress and prospects. Critical Reviews in Biotechnology, 25, 113–152. DOI: 10.1080/07388550500248571.

    Article  CAS  Google Scholar 

  • Michalak, I., Chojnacka, K., & Witek-Krowiak, A. (2013). State of the art for the biosorption process-a review. Applied Biochemistry and Biotechnology, 170, 1389–1416. DOI: 10.1007/s12010-013-0269-0.

    Article  CAS  Google Scholar 

  • Mirza, N., Mahmood, Q., Pervez, A., Ahmad, R., Farooq, R., Shah, M. M., & Azim, M. R. (2010). Phytoremediation potential of Arundo donax in arsenic-contaminated synthetic wastewater. Bioresource Technology, 101, 5815–5819. DOI: 10.1016/j.biortech.2010.03.012.

    Article  CAS  Google Scholar 

  • Mirza, N., Pervez, A., Mahmood, Q., Shah, M. M., & Shafqat, M. N. (2011). Ecological restoration of arsenic contaminated soil by Arundo donax L. Ecological Engineering, 37, 1949–1956. DOI: 10.1016/j.ecoleng.2011.07.006.

    Article  Google Scholar 

  • Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum, 15, 473–497. DOI: 10.1111/j.1399-3054.1962.tb08052.x.

    Article  CAS  Google Scholar 

  • Olguín, E. J. & Sánchez-Galván, G. (2012). Heavy metal removal in phytofiltration and phycoremediation: the need to differentiate between bioadsorption and bioaccumulation. New Biotechnology, 30, 3–8. DOI: 10.1016/j.nbt.2012.05.020.

    Article  Google Scholar 

  • Oyaro, N., Juddy, O., Murago, E. N. M., & Gitonga, E. (2007). The contents of Pb, Cu, Zn and Cd in meat in Nairobi, Kenya. Journal of Food, Agriculture & Environment, 5(3&4), 119–121.

    CAS  Google Scholar 

  • Papazoglou, E. G. (2007). Arundo donax L. stress tolerance under irrigation with heavy metal aqueous solutions. Desalination, 211, 304–313. DOI: 10.1016/j.desal.2006.03.600.

    Article  CAS  Google Scholar 

  • Singh, A., & Prasad, S. M. (2011). Reduction of heavy metal load in food chain: technology assessment. Reviews in Environmental Science and Bio/Technology, 10, 199–214. DOI: 10.1007/s11157-011-9241-z.

    Article  CAS  Google Scholar 

  • Soudek, P., Petrová, Š., Vaňková, R., Song, J., & Vaněk, T. (2014). Accumulation of heavy metals using Sorghum sp. Chemosphere 104, 15–24. DOI: 10.1016/j.chemosphere.2013.09.079.

    Article  CAS  Google Scholar 

  • Srivastava, S., Shrivastava, M., Suprasanna, P., & D’Souza, S. F. (2011). Phytofiltration of arsenic from simulated contaminated water using Hydrilla verticillata in field conditions. Ecological Engineering, 37, 1937–1941. DOI: 10.1016/j.ecoleng.2011.06.012.

    Article  Google Scholar 

  • Sun, H. H., Wang, Z. Y., Gao, P. P., & Liu, P. (2013). Selection of aquatic plants for phytoremediation of heavy metal in electroplate wastewater. Acta Physiologiae Plantarum, 35, 355–364. DOI: 10.1007/s11738-012-1078-8.

    Article  CAS  Google Scholar 

  • The Council of the European Communities (1983). Council Directive 83/513/EEC of 26 September 1983 on limit values and quality objectives for cadmium discharges. Official Journal, L291, 1–8.

    Google Scholar 

  • Thomas, H. C. (1944). Heterogeneous ion exchange in a flowing system. Journal of the American Chemical Society, 66, 1664–1666. DOI: 10.1021/ja01238a017.

    Article  CAS  Google Scholar 

  • Veselý, T., Tlustoš, P., & Száková, J. (2012). Organic acid enhanced soil risk element (Cd, Pb and Zn) leaching and secondary bioconcentration in water lettuce (Pistia stratiotes L.) in the rhizofiltration process. International Journal of Phytoremediation, 14, 335–349. DOI: 10.1080/15226514.2011.620650.

    Article  Google Scholar 

  • Vijayaraghavan, K., & Yun, Y. S. (2008). Bacterial biosorbents and biosorption. Biotechnology Advances, 26, 266–291. DOI: 10.1016/j.biotechadv.2008.02.002.

    Article  CAS  Google Scholar 

  • Willey, N. (Ed.) (2007). Phytoremediation: Methods and reviews. Totowa, NJ, USA: Humana Press.

    Google Scholar 

  • Wolborska, A. (1989). Adsorption on activated carbon of pnitrophenol from aqueous solution. Water Research, 23, 85–91. DOI: 10.1016/0043-1354(89)90066-3.

    Article  CAS  Google Scholar 

  • Yan, G. Y., Viraraghavan, T., & Chen, M. (2001). A new model for heavy metal removal in a biosorption column. Adsorption Science & Technology, 19, 25–43. DOI: 10.1260/0263617011493953.

    Article  CAS  Google Scholar 

  • Yoon, Y. H., & Nelson, J. H. (1984). Application of gas adsorption kinetics. I. A theoretical model for respirator cartridge service time. American Industrial Hygiene Association Journal, 45, 509–516. DOI: 10.1080/15298668491400197.

    Article  CAS  Google Scholar 

  • Zhang, Z. H., Rengel, Z., & Meney, K. (2010). Cadmium accumulation and translocation in four emergent wetland species. Water, Air, & Soil Pollution, 212, 239–249. DOI: 10.1007/s11270-010-0339-7.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miroslav Horník.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dürešová, Z., Šuňovská, A., Horník, M. et al. Rhizofiltration potential of Arundo donax for cadmium and zinc removal from contaminated wastewater. Chem. Pap. 68, 1452–1462 (2014). https://doi.org/10.2478/s11696-014-0610-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-014-0610-2

Keywords

Navigation