Skip to main content
Log in

Selection of aquatic plants for phytoremediation of heavy metal in electroplate wastewater

  • Original Paper
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

The remediation of heavy metal-contaminated sites using plants is a promising alternative to current methodologies. In this study, small-scale wetlands were constructed to search for new plant species that are suitable and hold potential for phytoremediation of heavy metal-contaminated wastewater originating from an electroplating plant. Ten macrophyte species [Phragmites australis (Cav.) Trin., Typha orientalis Presl, Lythrum salicaria Linn., Arundo donax Linn. var. versicolor Stokes, Typha minima Funk, Juncus effusus L., Pontederia cordata L., Cyperus alternifolius Linn. subsp. flabelliformis (Rottb.) Kükenth., Acorus calamus Linn., and Iris pseudacorus Linn.] were investigated and compared for their shapes, biomass, roots, and ability to accumulate heavy metals. Acorus calamus Linn., T. orientalis Presl, P. australis (Cav.) Trin., T. minima Funk, and L. salicaria Linn. exhibited the highest levels of metal tolerance, whereas P. cordata L., I. pseudacorus Linn., and C. alternifolius Linn. subsp. flabelliformis (Rottb.) Kükenth. had the lowest. Some plants accumulated higher concentrations of metals in the tissues compared with other species such as T. minima Funk, P. australis (Cav.) Trin., L. salicaria Linn., A. donax Linn. var. versicolor Stokes, P. cordata L., and A. calamus Linn., whereas T. orientalis Presl and C. alternifolius Linn. subsp. flabelliformis (Rottb.) Kükenth. had poor capacity to accumulate heavy metals. The results showed that, of the 10 species, P. australis (Cav.) Trin., A. calamus Linn., T. minima Funk, and L. salicaria Linn. are the most suitable and promising plant materials for phytoremediation of heavy metal-contaminated wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Anderson TA, Guthrie EA, Walton BT (1993) Bioremediation. Environ Sci Technol 27:2630–2636

    Article  CAS  Google Scholar 

  • APHA (1998) Standard methods for the examination of water and wastewater, 20th edn. American Public Health Association, Baltimore

    Google Scholar 

  • Ayaz SC, Akca L (2001) Treatment of wastewater by natural systems. Environ Int 26:189–195

    Article  PubMed  CAS  Google Scholar 

  • Bart V, Paul Q, Filip MG (2005) The effect of hydrological regime on the metal bioavailability for the wetland plant species Salix cinerea. Environ Pollut 135:303–312

    Article  Google Scholar 

  • Blaylock MJ, Huang JW (2000) Phytoextraction of metals. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals using plants to clean up the environment. Wiley, New York, pp 53–70

  • Brix H (1994) Functions of macrophytes in constructed wetlands. Water Sci Technol 29:71–78

    CAS  Google Scholar 

  • Cary EE, Allaway WH, Olson OE (1977) Control of chromium concentrations in food plants 1. Absorption and translocation of chromium by plants. J Agr Food Chem 25:300–304

    Article  CAS  Google Scholar 

  • Chaney RL, Angle JS, McIntosh MS (2005) Using hyperaccumulator plants to phytoextract soil Ni and Cd. Z Natureforsch 60c:190–198

    Google Scholar 

  • Chen HM, Zheng CR, Tu C, Shen ZG (2000) Chemical methods and phytoremediation of soil contaminated with heavy metals. Chemosphere 41:229–234

    Article  PubMed  CAS  Google Scholar 

  • Chen TB, Huang ZC, Huang YY, Xie H, Liao XY (2003) Cellular distribution of arsenic and other elements in hyperaccumulator Pteris nervosa and their relations to arsenic accumulation. Chin Sci Bull 48:1586–1591

    CAS  Google Scholar 

  • Cheng S, Grosse W, Karrenbrock F, Thoennessen M (2002) Efficiency of constructed wetlands in decontamination of water polluted by heavy metals. Ecol Eng 18:317–325

    Article  Google Scholar 

  • Cunningham SD, Ow DW (1996) Promises and prospects of phytoremediation. Plant Physiol 110:715–719

    PubMed  CAS  Google Scholar 

  • Das P, Samantaray S, Rout GR (1997) Studies on cadmium toxicity in plants: a review. Environ Pollut 98:29–36

    Article  PubMed  CAS  Google Scholar 

  • David JM, Bridget MM, Marinus LO (2005) Screening the wetland plant species Alisma plantago-aquatica, Carex rostrata and Phalaris arundinacea for innate tolerance to zinc and comparison with Eriophorum angustifolium and Festuca rubra Merlin. Environ Pollut 134:343–351

    Article  Google Scholar 

  • Dombeck G, Perry M, Phinney J (1998) Mass balance on water column trace metals in a free-surface-flow-constructed wetland in Sacramento California. Ecol Eng 10:313–339

    Article  Google Scholar 

  • Dunbain JS, Bowner KH (1992) Potential use of constructed wetlands for treatment of industrial wastewaters containing metals. Sci Total Environ 111:151–168

    Article  Google Scholar 

  • Dushenkkov V, Kumar P, Motto H (1995) The use of plants to remove heavy metals from aqueous streams. Environ Sci Technol 29:1239–1245

    Article  Google Scholar 

  • Evanko CR, Dzombak DA (1997) Remediation of metals contaminated soils and groundwater. Technology Evaluation Report TE-97-01. In: Ground-water remediation technologies analysis center, Pittsburg, 1997

  • Fritioff A, Greger M (2003) Aquatic and terrestrial plant species with potential to remove heavy metals from storm water. Int J Phytoremediation 5:211–224

    Article  PubMed  CAS  Google Scholar 

  • Garbisu C, Alkorta I (2001) Phytoextraction: a cost effective plant based technology for the removal of metals from the environment. Bioresour Technol 77:229–236

    Article  PubMed  CAS  Google Scholar 

  • Gersberg RM, Elkins BV, Lyon SR (1986) Role of aquatic plants in wastewater treatment by artificial wetlands. Water Res 20:363–368

    Google Scholar 

  • Greger M (2004) Metal availability, uptake, transport and accumulation in plants. In: Prasad MNV (ed) Heavy metal stress in plants from biomolecules to ecosystems, 2nd edn. Springer-Verlag, Berlin, pp 1–27

  • Greger M, Kautsky L (1993) Use of macrophytes for mapping bioavailable heavy metals in shallow coastal areas. Appl Geochem Suppl 37–43

  • Gupta AK, Sinha S (2006) Chemical fractionation and heavy metals accumulation in the plants of Sesamum indicum (L.) var. T55 grown on soil amended with tannery sludge: selection of single extractants. Chemosphere 64:161–173

    Article  PubMed  CAS  Google Scholar 

  • Hadad HR, Maine MA, Bonetto CA (2006) Macrophyte growth in a pilot-scale constructed wetland for industrial wastewater treatment. Chemosphere 63:1744–1753

    Article  PubMed  CAS  Google Scholar 

  • Hardej M, Ozimek T (2002) The effect of sewage sludge flooding on growth and morphometric parameters of Phragmites australis (Cav.) Trin. ex Steudel. Ecol Eng 18:343–350

    Article  Google Scholar 

  • Jenssen P, Maehlum T, Krogstad T (1993) Potential use of constructed wetlands for wastewater treatment in northern environments. Water Sci Technol 28:149–157

    Google Scholar 

  • Kadlec RH, Knight RL (1996) Treatment wetland. CRC Press, New York

    Google Scholar 

  • Kotas J, Stasicka Z (2000) Commentary: chromium occurrence in the environment and methods of its speciation. Environ Pollut 107:263–283

    Article  PubMed  CAS  Google Scholar 

  • Kumar P, Dushenkko V, Motto H (1995) Phytoextraction the use of plants to remove heavy metals from soils. Environ Sci Technol 29:1232–1238

    Article  PubMed  CAS  Google Scholar 

  • Li WP, Wang J, Li W, Wang JC (1995) Application of water hyacinth to the removal of heavy metals from electroplate wastewater. Chin J Ecol 14:30–35 (in Chinese)

    Google Scholar 

  • Liu W, Shu WS, Lan CY (2004) Viola baoshanensis, a plant that hyperaccumulates cadmium. Chin Sci Bull 49:29–32

    CAS  Google Scholar 

  • Manios T, Stentiford EI, Millner PA (2003) The effect of heavy metals accumulation on the chlorophyll concentration of Typha latifolia plants, growing in a substrate containing sewage sludge compost and watered with metalliferous water. Ecol Eng 20:65–74

    Article  Google Scholar 

  • Matagi S, Swai D, Mugabe R (1998) A review of heavy metal removal mechanisms in wetlands. Afr J Trop Hydrobiol Fish 8:23–35

    Article  Google Scholar 

  • Mays P, Edwards G (2001) Comparison of heavy metal accumulation in a natural wetland and constructed wetlands receiving acid mine discharge. Ecol Eng 16:487–500

    Article  Google Scholar 

  • McLaughlin MJ, Parker DR, Clarke JM (1999) Metals and micronutrients-food safety issues. Field crops Res 60:143–163

    Article  Google Scholar 

  • Mills T, Robinson B, Green D et al (2000) Difference in Cd uptake and distribution within poplar and willow species. In: Proceedings of the 42nd annual conference and expoof the New Zealand water and waste association, Rotorua, 2000

  • Miretzky P, Saralegui A, Cirelli AF (2004) Aquatic macrophytes potential for the simultaneous removal of heavy metals (Buenos Aires, Argentina). Chemosphere 57:997–1005

    Article  PubMed  CAS  Google Scholar 

  • Mulligan CN, Yong RN, Gibbs BF (2001) Remediation technologies for metal-contaminated soils and groundwater: an evaluation. Eng Geol 60:193–207

    Article  Google Scholar 

  • Mungur AS, Shutes RBE, Revitt DM et al (1997) An assessment of metal removal by a laboratory scale wetland. Water Sci Technol 35:125–133

    CAS  Google Scholar 

  • Murray-Gulde CL, Bearr J, Rodgers JH (2005) Evaluation of a constructed wetland treatment system specifically designed to decrease bioavailable copper in a wastestream. Ecotoxicol Environ Safety 61:60–73

    Article  PubMed  CAS  Google Scholar 

  • Rai UN, Sinha S, Triphati RD et al (1995) Wastewater treatability potential of some aquatic macrophytes: removal of heavy metals. Ecol Eng 5:5–12

    Article  Google Scholar 

  • Raskin I, Smith RD, Salt DE (1997) Phytoremediation of metals: using plants to remove pollutants from the environment. Curr Opin Biotech 8:221–226

    Article  PubMed  CAS  Google Scholar 

  • Reeves RD, Baker AJM (2000) Metal accumulating plants. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals: using plants to clean up the environment. Wiley, New York, pp 193–229

    Google Scholar 

  • Salt DE, Smith RD, Raskin I (1998) Phytoremediation. Annu Rev Plant Physiol Plant Mol Biol 49:643–668

    Article  PubMed  CAS  Google Scholar 

  • Schnoor JL (1997) Ground water remediation technologies analysis center. Pittsburg, USA

    Google Scholar 

  • Scholz M (2003) Performance perdictions of mature experimental constructed wetlands which treat urban water receiving high loads of lead and copper. Water Res 37:1270–1277

    Article  PubMed  CAS  Google Scholar 

  • Shanker AK, Cervantes C, Loza-Tavera H et al (2005) Chromium toxicity in plants. Environ Int 31:739–753

    Article  PubMed  CAS  Google Scholar 

  • Sharma SS, Gaur JP (1995) Potential of Lemna polyrhiza for removal of heavy metals. Ecol Eng 4:37–45

    Article  Google Scholar 

  • Skinner K, Wright N, Porter-Goff E (2007) Mercury uptake and accumulation by four species of aquatic plants. Environ Pollut 145:234–237

    Article  PubMed  CAS  Google Scholar 

  • Tang S (1993) Experimental study of a constructed wetland for treatment of acidic wastewater from an iron mine in China. Ecol Eng 2:253–259

    Article  Google Scholar 

  • Vollenweider RA (1974) A manual on methods for measuring primary production in aquatic environments. IBP Handbook No. 12 International Biological Programme, 2nd edn. Blackwell Scientific Publications, Oxford, pp 225

  • Watanabe ME (1997) Phytoremediation on the brink commercialization. Environ Sci Technol News 31:182A–186A

    Article  CAS  Google Scholar 

  • Wei CY, Chen TB, Huang ZC et al (2002) Cretan brake (Pteris cretica L.): an arsenic-accumulating plant. Acta Ecologica Sinica 22:777–778 (in Chinese)

    Google Scholar 

  • Wei SH, Zhou QX, Wang X et al (2005) A newly-discovered Cd-hyperaccumulator Solanum nigrum L. Chin Sci Bull 50:33–38

    Article  CAS  Google Scholar 

  • Weis JS, Weis P (2004) Review metal uptake, transport and release by wetland plants: implications for phytoremediation and restoration. Environ Int 30:685–700

    Article  PubMed  CAS  Google Scholar 

  • Wolterbeek HTh, Van Der Meer AJGM (2002) Transport rate of arsenic, cadmium, copper and zinc in Potamogeton pectinatus L.: radiotracer experiments with 76As, 109,115Cd, 64Cu and 65,69mZn. Sci Total Environ 287:13–30

    Article  PubMed  CAS  Google Scholar 

  • Xiong ZT (1998) Lead uptake and effects on seed germination and plant growth in a Pb hyperaccumulator Brassica pekinensis Rupr. Bull Environ Contam Toxicol 60:285–291

    Article  PubMed  CAS  Google Scholar 

  • Xue SG, Chen YX, Reeves RD et al (2004) Manganese uptake and accumulation by the hyperaccumulator plant Phytolacca acinosa Roxb. (Phytolaccaceae). Environ Pollut 131:393–399

    Article  PubMed  CAS  Google Scholar 

  • Yang X, Long XX, Ni WZ (2002) Sedum alfredii H: a new zn hyper accumulating plant first found in China. Chin Sci Bull 47:1634–1637

    CAS  Google Scholar 

  • Zhang XH, Wang DQ, Huang M (2004) Development of electroplating sludge technology. J Guilin Univ Technol 24:502–506 (in Chinese)

    Google Scholar 

Download references

Acknowledgments

This study was financially supported by Zhejiang Province scientific and technological projects “green ecological restoration technology research of small towns sewage treatment” (2005C24011); Jinhua City project “research and demonstration of wetland system technology for the treatment of electroplating wastewater” (2006-1-132).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Liu.

Additional information

Communicated by B. Barna.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, H., Wang, Z., Gao, P. et al. Selection of aquatic plants for phytoremediation of heavy metal in electroplate wastewater. Acta Physiol Plant 35, 355–364 (2013). https://doi.org/10.1007/s11738-012-1078-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-012-1078-8

Keywords

Navigation