Skip to main content
Log in

Effect of anions on the structure and catalytic properties of a La-doped Cu-Mn catalyst in the water-gas shift reaction

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Effects of the anion type on the structure, thermal stability, and catalytic performance of La-doped Cu-Mn catalysts prepared by co-precipitation were characterized by X-ray diffraction, Brunauer-Emmett-Teller, temperature-programmed reduction, temperature-programmed reduction of oxidized surfaces, and temperature-programmed desorption. The Cu-Mn catalyst was tested for the water-gas shift (WGS) reaction. The main crystalline phase of samples prepared with sulfate, acetate, chloride, and nitrate as the starting materials was a Cu1.5Mn1.5O4 spinel structure, following the WGS reaction, the main crystalline phases were transformed into Cu and MnO. The sample prepared with acetate as the starting material showed the most obvious MnCO3 characteristic diffraction peaks, with better synergistic effects of Cu and MnO, increased adsorption of CO2 and improved dispersion of Cu on the catalyst surface; also, the best thermal stability and the highest low temperature catalytic activity were observed. The sample prepared with nitrate as the starting material maintained high thermal stability and catalytic performance in the range of 400°C to 450°C, but CO conversion decreased below 350°C. Catalytic performance of the sample prepared with sulfate and chloride as the starting materials was poor, ranging from 200°C to 450°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Chen, J. X., Wang, R. J., Li, Y. M.,& Zhang, J. Y. (2001). Influences of different nickel precursors on the performance of Ni/γ-Al2O3 catalysts for CH4-CO2 reforming. Journal of Fuel Chemistry and Technology, 29, 494–498.

    CAS  Google Scholar 

  • Cui, M. S., Yang, D., He, Z. S., Song, Y. J., Huang, X. W.,& Chen, Z. (2004). Effect of CuO/CeO2 catalyst on methane combustion. Journal of the Chinese Rare Earth Society, 22, 605–608. DOI: 10.3321/j.issn:1000-4343.2004.05.004.

    CAS  Google Scholar 

  • Du, X. R., Yuan, Z. S., Cao, L., Zhang, C. X.,& Wang, S. D. (2008). Water gas shift reaction over Cu-Mn mixed oxides catalysts: Effects of the third metal. Fuel Processing Technology, 89, 131–138. DOI: 10.1016/j.fuproc.2007.07.002.

    Article  CAS  Google Scholar 

  • Fu, Q., Saltsburg, H.,& Flytzani-Stephanopoulos, M. (2003). Active non-metallic Au and Pt species on ceria-based watergas shift catalysts. Science, 301, 935–938. DOI: 10.1126/science.1085721.

    Article  CAS  Google Scholar 

  • Ghenciu, A. F. (2002). Review of fuel processing catalysts for hydrogen production in PEM fuel cell systems. Current Opinion in Solid State & Materials Science, 6, 389–399. DOI: 10.1016/s1359-0286(02)00108-0.

    Article  Google Scholar 

  • He, R. X., Liu, Q. S., Zhi, K. D.,& Cui, X. L. (2008). Effect of adding rate of precipitator on the texture and activity of the copper-manganese mixed oxide catalyst for water gas shift reaction. Journal of Fuel Chemistry and Technology, 36, 767–771. DOI: 10.3969/j.issn.0253-2409.2008.06.022.

    CAS  Google Scholar 

  • He, R. X., Zhi, K. D., Liu, Q. S., Wu, F., Zhou, C. L.,& Zhang, P. B. (2012a). Copper-manganese catalysts prepared by precursor method for water-gas shift reaction. Journal of Molecular Catalysis (China), 6, 522–528.

    Google Scholar 

  • He, R. X., Liu, Q. S., Wu, F., Zhou, C. L., Zhi, K. D.,& Yao, H. B. (2012b). Effects of La-doping on the structure and performance of copper-manganese oxides for the water-gas shift reaction. Advanced Materials Research, 512–515, 2131–2134. DOI: 10.4028/www.scientific.net/AMR.512-515.2131.

    Article  CAS  Google Scholar 

  • Hua, J. M., Zheng, Q., Ling. X. Y.,& Wei, K. M. (2003). Influence of Au loading on the structure and catalytic performance of Au/α-Fe2O3 catalysts for low-temperature water-gas shift reaction. Journal of Fuel Chemistry and Technology, 31, 558–563. DOI: 10.3969/j.issn.0253-2409.2003.06.009.

    CAS  Google Scholar 

  • Hua, J. M., Wei, K. M., Zheng, Q.,& Lin, X. Y. (2004). Influence of calcination temperature on the structure and catalytic performance of Au/iron oxide catalysts for water-gas shift reaction. Applied Catalysis A: General, 259, 121–130. DOI: 10.1016/j.apcata.2003.09.028.

    Article  CAS  Google Scholar 

  • Hutchings, G. J., Mirzaei, A. A., Joyner, R. W., Siddiqui, M. R. H.,& Taylor, H. S. (1998). Effect of preparation conditions on the catalytic performance of copper manganese oxide catalysts for CO oxidation. Applied Catalysis A: General, 166, 143–152. DOI: 10.1016/s0926-860x(97)00248-2.

    Article  CAS  Google Scholar 

  • Jiang, H. Q., He, R. X., Wu, F., Zhi, K. D., Zhou, C. L., Zhang, W. H.,& Liu, Q. S. (2013). The effect of anions on structure and catalytic properties of the Fe-based high temperature shift catalyst. Journal of Inner Mongolia University of Technology, 32, 189–193.

    Google Scholar 

  • Kim, C. H.,& Thompson, L. T. (2006). On the importance of nanocrystalline gold for Au/CeO2 water-gas shift catalysts. Journal of Catalysis, 244, 248–250. DOI: 10.1016/j.jcat.2006.08.018.

    Article  CAS  Google Scholar 

  • Kniep, B. L., Ressler, T., Rabis, A., Girgsdies, F., Baenitz, M., Steglich, F.,& Schlögl R. (2004). Rational design of nanostructured copper-zinc oxide catalysts for the steam reforming of methanol. Angewandte Chemie International Edition, 43, 112–115. DOI: 10.1002/anie.200352148.

    Article  CAS  Google Scholar 

  • Kniep, B. L., Girgsdies, F.,& Ressler, T. (2005). Effect of precipitate aging on the microstructural characteristics of Cu/ZnO catalysts for methanol steam reforming. Journal of Catalysis, 236, 34–44. DOI: 10.1016/j.jcat.2005.09.001.

    Article  CAS  Google Scholar 

  • Koryabkina, N. A., Phatak, A. A, Ruettinger, W. F., Farrauto, R. J.,& Ribeiro, F. H. (2003). Determination of kinetic parameters for the water-gas shift reaction on copper catalysts under realistic conditions for fuel cell applications. Journal of Catalysis, 217, 233–239. DOI: 10.1016/s0021-9517(03)00050-2.

    CAS  Google Scholar 

  • Kusama, H., Bando, K. K., Okabe, K.,& Arakawa, H. (2001). CO2 hydrogenation reactivity and structure of Rh/SiO2 catalysts prepared from acetate, chloride and nitrate precursors. Applied Catalysis A: General, 205, 285–294. DOI: 10.1016/s0926-860x(00)00576-7.

    Article  CAS  Google Scholar 

  • Li, E. L., Gao, J. G., Cui, H. N.,& Qin, X. W. (2009). Risk analysis of China’s lignite upgrading project. Coal Economic Research, 12, 25–56.

    Google Scholar 

  • Liu, Q. S., Zhang, Q. C., Ma, W. P., He, R. X., Kou, L. J.,& Mou, Z. J. (2005a). Progress in water-gasshift catalysts. Progress in Chemistry, 17, 389–398. DOI: 10.3321/j.issn:1005-281x.2005.03.003.

    CAS  Google Scholar 

  • Liu, Q. S., He, R.X., Cui, X. L., Zhi, K. D., & Ma, W. P. (2005b). A thermostable Cu-Mn based catalyst for high temperature water-gas-shift reaction. In Proceedings of the 230th ACS National Meeting, August 28–September 1, 2005. Washington, DC, USA: ACS.

    Google Scholar 

  • Liu, Q., Wang, L. C., Chen, M., Liu, Y. M., Cao, Y., He, H. Y.,& Fan, K. N. (2008). Waste-free soft reactive grinding synthesis of high-surface-area copper-manganese spinel oxide catalysts highly effective for methanol steam reforming. Catalysis Letters, 121, 144–150. DOI: 10.1007/s10562-007-9311-6.

    Article  CAS  Google Scholar 

  • Schur, M., Bems, B., Dassenoy, A., Kassatkine, I., Urban, J., Wilmes, H., Hinrichsen, O., Muhler, M.,& Schlögl, R. (2003). Continuous coprecipitation of catalysts in a micromixer: Nanostructured Cu/ZnO composite for the synthesis of methanol. Angewandte Chemie International Edition, 42, 3815–3817. DOI: 10.1002/anie.200250709.

    Article  CAS  Google Scholar 

  • Swartz, S. L., Seabaugh, M. M., Holt, C. T.,& Dawson, W. J. (2001). Fuel processing catalysts based on nanoscale ceria. Fuel Cells Bulletin, 4(30), 7–10. DOI: 10.1016/s1464-2859(01)80039-0.

    Article  Google Scholar 

  • Tabakova, T., Boccuzzi, F., Manzoli, M.,& Andreeva, D. (2003). FTIR study of low-temperature water-gas shift reaction on gold/ceria catalyst. Applied Catalysis A: General, 252, 385–397. DOI: 10.1016/s0926-860x(03)00493-9.

    Article  CAS  Google Scholar 

  • Tabakova, T., Boccuzzi, F., Manzoli, M., Sobczak, J. W., Idakiev, V.,& Andreeva, D. (2004). Effect of synthesis procedure on the low-temperature WGS activity of Au/ceria catalysts. Applied Catalysis B: Environmental, 49, 73–81. DOI: 10.1016/j.apcatb.2003.11.014.

    Article  CAS  Google Scholar 

  • Tabakova, T., Idakiev, V., Avgouropoulos, G., Papavasiliou, J., Manzoli, M., Boccuzzi, F.,& Ioannides, T. (2013). Highly active copper catalyst for low-temperature watergas shift reaction prepared via a Cu-Mn spinel oxide precursor. Applied Catalysis A: General, 451, 184–191. DOI: 10.1016/j.apcata.2012.11.025.

    Article  CAS  Google Scholar 

  • Tanaka, Y., Takeguchi, T., Kikuchi, R.,& Eguchi, K. (2005). Influence of preparation method and additive for Cu-Mn spinel oxide catalyst on water gas shift reaction of reformed fuels. Applied Catalysis A: General, 279, 59–66. DOI: 10.1016/j.apcata.2004.10.013.

    Article  CAS  Google Scholar 

  • Trimm, D. L.,& Önsan, Z. I. (2001). Onboard fuel conversion for hydrogen-fuel-cell-driven vehicles. Catalysis Reviews: Science and Engineering, 43, 31–84. DOI: 10.1081/cr-100104386.

    Article  CAS  Google Scholar 

  • Wu, F. (2012). Studies on synthesis, characteristics and intrinsic kinetics of the La-doped copper-manganese catalysts for coal-derived shift reaction. Master Dissertation, Inner Mongolia University of Technology, Huhehaote, China.

    Google Scholar 

  • Yahiro, H., Nakaya, K., Yamamoto, T., Saiki, K.,& Yamaura, H. (2006). Effect of calcination temperature on the catalytic activity of copper supported on γ-alumina for the water-gasshift reaction. Catalysis Communications, 7, 228–231. DOI: 10.1016/j.catcom.2005.11.004.

    Article  CAS  Google Scholar 

  • Yang, L. (2011). Synthesis, characteristics and catalysis performance of copper-manganese catalyst for coal-derived widerange temperature shift reaction. Master Dissertation, Inner Mongolia University of Technology, Huhehaote, China.

    Google Scholar 

  • Yeragi, D. C., Pradhan, N. C.,& Dalai, A. K. (2006). Lowtemperature water-gas shift reaction over Mn-promoted Cu/Al2O3 catalysts. Catalysis Letters, 112, 139–148. DOI: 10.1007/s10562-006-0193-9.

    Article  CAS  Google Scholar 

  • Zhang, Y. J., Hu, Q. X., Hu, B., Fang, Z. Y., Qian, Y. T.,& Zhang, Z. D. (2006). Preparation, characterization and application of a new kind of mesoporous composite. Materials Chemistry and Physics, 96, 16–21. DOI: 10.1016/j.matchemphys.2005.06.028.

    Article  CAS  Google Scholar 

  • Zhang, Z. C., Zhang, Q. X., Yin, Y. Q., Wu, F., Yu, X. F., Xu, Y. Z.,& Li, B. (2008). Reducing and catalytic behaviors of copper and manganese oxides water gas shift catalyst. Industrial Catalysis, 16(7), 30–35.

    Google Scholar 

  • Zhi, G. J., Wang, Y. Y., Jin, G. Q.,& Guo, X. Y. (2012). Effect of nickel precursors on catalytic performance of Ni/SiC catalysts for CO2 methanation. Natural Gas Chemical Industry, 2012(5), 10–14.

    Google Scholar 

  • Zhi, K. D. (2010). Analysis, optimization of the reaction precipitation process and controlled synthesis of copper-based mixed oxides catalyst for water-gas shift reaction. Ph.D. thesis, Inner Mongolia University of Technology, Huhehaote, China.

    Google Scholar 

  • Zhi, K. D., Liu, Q. S., Zhang, Y. G., He, S.,& He, R. X. (2010). Effect of precipitator on the texture and activity of coppermanganese mixed oxide catalysts for the water gas shift reaction. Journal of Fuel Chemistry and Technology, 38, 445–451. DOI: 10.1016/s1872-5813(10)60038-2.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quan-Sheng Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, RX., Jiang, HQ., Wu, F. et al. Effect of anions on the structure and catalytic properties of a La-doped Cu-Mn catalyst in the water-gas shift reaction. Chem. Pap. 68, 1049–1058 (2014). https://doi.org/10.2478/s11696-014-0556-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-014-0556-4

Keywords

Navigation