Skip to main content
Log in

Investigation of saturated and aromatic hydrocarbon resistance mechanisms in Pseudomonas aeruginosa IBBML1

  • Research Article
  • Published:
Central European Journal of Biology

Abstract

Pseudomonas aeruginosa IBBML1, isolated from Poeni petroleum sludge, was able to tolerate and degrade both saturated (n-hexane, n-heptane, n-hexadecane, cyclohexane) and aromatic (benzene, ethylbenzene, propylbenzene, xylene isomers, styrene) hydrocarbons. Molecular studies have revealed that the high hydrocarbon resistance of Pseudomonas aeruginosa IBBML1 could be due to the action of members of the HAE1 (hydrophobe/amphiphile efflux 1) family of transporters. It is further possible that additional mechanisms may account for the tolerance of Pseudomonas aeruginosa IBBML1 to hydrocarbons, and a combination of short-term and long-term mechanisms may act together in the adaptation of Pseudomonas aeruginosa IBBML1 cells to saturated and aromatic hydrocarbons. β-galactosidase activity measurements revealed that there was significant induction of the lacZ gene in Pseudomonas aeruginosa IBBML1 cells grown in the presence of either 5% and 10% (v/v) saturated or aromatic hydrocarbons, compared with control (cells incubated without hydrocarbons). Rhodamine 6G accumulation in Pseudomonas aeruginosa IBBML1 cells grown in the presence of 5% and 10% (v/v) saturated hydrocarbons was higher than rhodamine 6G accumulation in cells grown in the presence of 5% and 10% (v/v) aromatic hydrocarbons. The study of cellular and molecular modifications to Pseudomonas aeruginosa IBBML1 induced by 5% and 10% (v/v) saturated and aromatic hydrocarbons revealed a complex response of bacterial cells to the presence of different hydrophobic substrates in the culture medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Samanta S.K., Singh O.V., Jain R.K., Polycyclic aromatic hydrocarbons: environmental pollution and bioremediation, Trends Biotechnol., 2002, 20, 243–248

    Article  CAS  PubMed  Google Scholar 

  2. Okoh A.I., Biodegradation alternative in the cleanup of petroleum hydrocarbon pollutants, Biotechnol. Mol. Biol. Rev., 2006, 1, 38–50

    Google Scholar 

  3. Wrenn B., Venosa A.D., Selective enumeration of aromatic and aliphatic hydrocarbon degrading bacteria by a most probable number procedure, Can. J. Microbiol., 1996, 42, 252–259

    Article  CAS  PubMed  Google Scholar 

  4. Mendoza R.E., Hydrocarbon leaching, microbial population, and plant growth in soil amended with petroleum, Biorem. J., 1998, 3, 223–231

    Article  Google Scholar 

  5. Andreoni V., Cavalca L., Rao M.A., Nocerino G., Bernasconi S., DellÁmico E., et al., Bacterial communities and enzyme activities of PAHs polluted soils, Chemosphere, 2004, 57, 401–412

    Article  CAS  PubMed  Google Scholar 

  6. Obbard J.P., Ng K.L., Xu R., Biorremediation of petroleum contaminated beach sediments: use of crude palm oil and fatty acids to enhance indigenous biodegradation, Water Air Soil Pollut., 2004, 157, 149–161

    Article  CAS  Google Scholar 

  7. Labud V., Garcia C., Hernandez T., Effect of hydrocarbon pollution on the microbial properties of a sandy and a clay soil, Chemosphere, 2007, 66, 1863–1874

    Article  CAS  PubMed  Google Scholar 

  8. Rodriguez-Herva J.J., Ramos-Gonzalez M.I., Ramos J.L., The Pseudomonas putida peptidoglycanassociated outer membrane lipoprotein is involved in maintenance of the integrity of the cell envelope, J. Bacteriol., 1996, 178, 1699–1706

    CAS  PubMed  Google Scholar 

  9. Inoue A., Horikoshi K., A Pseudomonas thrives in high concentrations of toluene, Nature, 1989, 338, 264–266

    Article  CAS  Google Scholar 

  10. Ramos J.L., Duque E., Huertas M.J., HaÍdour A., Isolation and expansion of the catabolic potential of a Pseudomonas putida strain able to grow in the presence of high concentrations of aromatic hydrocarbons, J. Bacteriol., 1995, 177, 3911–3916

    CAS  PubMed  Google Scholar 

  11. Ramos J.L., Duque E., Rodriguez-Hervas J.J., Godoy P., Haidour A., Reyes F., et al., Metabolism for solvent tolerance in bacteria, J. Biol. Chem., 1997, 272, 3887–3890

    Article  CAS  PubMed  Google Scholar 

  12. Ramos J.L., Duque E., Godoy P., Segura A., Efflux pumps involved in toluene tolerance in Pseudomonas putida DOT-T1E, J. Bacteriol., 1998, 180, 3323–3329

    CAS  PubMed  Google Scholar 

  13. Ramos J.L., Duque E., Gallegos M.T., Godoy P., Ramos-Gonzalez M.I., Rojas A., et al., Mechanisms of solvent tolerance in Gram-negative bacteria, Annu. Rev. Microbiol., 2002, 56, 743–768

    Article  CAS  PubMed  Google Scholar 

  14. Ramos-González M.-I., Godoy P., Alaminos M., Ben-Bassat A., Ramos J.L., Physiological characterization of Pseudomonas putida DOT-T1E tolerance to p-hydroxybenzoate, Appl. Environ. Microbiol., 2001, 67, 4338–4341

    Article  PubMed  Google Scholar 

  15. Segura A., Duque E., Mosqueda G., Ramos J.L., Junker F., Multiple responses of Gram-negative bacteria to organic solvents, Environ. Microbiol., 1999, 1, 191–198

    Article  CAS  PubMed  Google Scholar 

  16. Segura A., Godoy P., van Dillewijn P., Hurtado A., Arroyo N., Santacruz S., et al., Proteomic analysis reveals the participation of energy- and stressrelated proteins in the response of Pseudomonas putida DOT-T1E to toluene, J. Bacteriol., 2005, 187, 5937–5945

    Article  CAS  PubMed  Google Scholar 

  17. Segura A., Hurtado A., Rivera B., Lăzăroaie M.M., Isolation of new toluene-tolerant marine strains of bacteria and characterization of their solventtolerance properties, J. Appl. Microbiol., 2008, 104, 1408–1416

    Article  CAS  PubMed  Google Scholar 

  18. Isken S., de Bont J.A.M., Bacteria tolerant to organic solvents, Extremophiles, 1998, 2, 229–238

    Article  CAS  PubMed  Google Scholar 

  19. Osborne S.J., Leaver J., Turner M.K., Dunnill P., Correlation of biocatalytic activity in an organicaqueous two-liquid phase system with solvent concentration in the cell membrane, Enzyme Microb. Technol., 1990, 12, 281–291

    Article  CAS  PubMed  Google Scholar 

  20. Sikkema J., de Bont J.A.M., Poolman B., Mechanisms of membrane toxicity of hydrocarbons, Microbiol. Rev., 1995, 59, 201–222

    CAS  PubMed  Google Scholar 

  21. Heipieper H.J., Weber F.J., Sikkema J., Keweloh H., de Bont J.A.M., Mechanisms of resistance of whole cells to toxic organic solvents, Trends Biotechnol., 1994, 12, 409–414

    Article  CAS  Google Scholar 

  22. Weber F.J., de Bont J.A.M., Adaptation mechanisms of microorganisms to the toxic effects of organic solvents on membranes, Biochim. Biophys. Acta, 1996, 1286, 225–245

    CAS  PubMed  Google Scholar 

  23. Heipieper H.J., Neumann G., Cornelissen S., Meinhardt F., Solvent-tolerant bacteria for biotransformations in two-phase fermentation systems, Appl. Microbiol. Biotechnol., 2007, 74, 961–973

    Article  CAS  PubMed  Google Scholar 

  24. Lăzăroaie M.M., Pseudomonas aeruginosa IBBML1 adaptation to high concentrations of hydrocarbons, Electronic Journal of Biology, 2008, 4, 17–26, http://www.ejbio.com/pps/2008/17.pdf

    Google Scholar 

  25. De Ley J., The quick approximation of DNA base composition from absorbancy ratios, Antonie van Leeuwenhoek, 1976, 33, 203–208

    Article  Google Scholar 

  26. Grifoll M., Selifonov S.A., Gatlin C.V., Chapman P.J., Actions of a versatile fluorene-degrading bacterial isolate on polycyclic aromatic hydrocarbons, Appl. Environ. Microbiol., 1995, 61, 3711–3723

    CAS  PubMed  Google Scholar 

  27. Nielsen L.E., Kadavy D.R., Rajagopal S., Drijber R., Nickerson K.W., Survey of extreme solvent tolerance in gram-positive cocci: membrane fatty acid changes in Staphylococcus haemolyticus grown in toluene, Appl. Environ. Microbiol., 2005, 71, 5171–5176

    Article  CAS  PubMed  Google Scholar 

  28. Sambrook J., Fritsch E.F., Maniatis T., Molecular cloning - a laboratory manual, 2nd ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1989

    Google Scholar 

  29. Miller J.H., Assay of β-galactosidase, In: Experiments in Molecular Genetics, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1972

    Google Scholar 

  30. Rosenberg M., Gutnick D., Rosenberg E., Adherence of bacteria to hydrocarbons: a simple method for measuring cell-surface hydrophobicity, FEMS Microbiol. Lett., 1980, 9, 29–33

    Article  CAS  Google Scholar 

  31. Benning C., Somerville C.R., Isolation and genetic complementation of a sulfolipid-deficient mutant of Rhodobacter sphaeroides, J. Bacteriol., 1992, 174, 2352–2360

    CAS  PubMed  Google Scholar 

  32. Foght J.M., Fedorak P.M., Westlake W.S., Mineralization of [14C]-hexadecane and [14C]-phenanthrene in crude oil: specificity among bacterial isolates, Can. J. Microbiol., 1990, 36, 169–175

    Article  CAS  PubMed  Google Scholar 

  33. Sotsky J.B., Greer C.W., Atlas R.M., Frequency of genes in aromatic and aliphatic hydrocarbon biodegradation pathways within bacterial populations from Alaskan sediments, Can. J. Microbiol., 1994, 40, 981–985

    Article  CAS  PubMed  Google Scholar 

  34. Tseng T.T., Gratwick K.S., Kollman J., Park D., Nies D.H., Goffeau A., et al., The RND permease superfamily: an ancient, ubiquitous and diverse family that includes human disease and development proteins, J. Mol. Microbiol. Biotechnol., 1999, 1, 107–125

    CAS  PubMed  Google Scholar 

  35. Zgurskaya H. I., Nikaido H., Multidrug resistance mechanisms: drug efflux across two membranes, Mol. Microbiol., 2000, 37, 219–225

    Article  CAS  PubMed  Google Scholar 

  36. Poole K., Multidrug resistance in gram-negative bacteria, Curr. Opin. Microbiol., 2001, 4, 500–508

    Article  CAS  PubMed  Google Scholar 

  37. Hearn E.M., Dennis J.J., Gray M.R., Foght J.M., Identification and characterization of the emhABC efflux system for polycyclic aromatic hydrocarbons in Pseudomonas fluorescens cLP6a, J. Bacteriol., 2003, 185, 6233–6240

    Article  CAS  PubMed  Google Scholar 

  38. Meguro N., Kodama Y., Gallegos M.T., Watanabe K., Molecular characterization of resistancenodulation-division transporters from solvent- and drug-resistant bacteria in petroleum-contaminated soil, Appl. Environ. Microbiol., 2005, 71, 580–586

    Article  CAS  PubMed  Google Scholar 

  39. Tokunaga H., Mitsuo K., Ichinose S., Omori A., Ventosa A., Nakae T., et al., Salt-inducible multidrug efflux pump protein in the moderately halophilic bacterium Chromohalobacter sp., Appl. Environ. Microbiol., 2004, 70, 4424–4431

    Article  CAS  PubMed  Google Scholar 

  40. Kieboom J., Dennis J.J., Zylstra G.J., Bont J.A.M., Active efflux of organic solvents in Pseudomonas putida S12 is induced by solvents, J. Bacteriol., 1998, 180, 6769–6772

    CAS  PubMed  Google Scholar 

  41. Master E.R., Mohn W.W., Induction of bphA, encoding biphenyl dioxygenase, in two polychlorinated biphenyl-degrading bacteria, psychrotolerant Pseudomonas strain Cam-1 and mesophilic Burkholderia strain LB400, Appl. Environ. Microbiol., 2001, 67, 2669–2676

    Article  CAS  PubMed  Google Scholar 

  42. Ahmed M., Borsch C.M., Neyfakh A.A., Schuldiner S., Mutants of the Bacillus subtilis multidrug transporter Bmr with altered sensitivity to the antihypertensive alkaloid reserpine, J. Biol. Chem., 1993, 268, 11086–11089

    CAS  PubMed  Google Scholar 

  43. Ahmed M., Borsch C.M., Taylor S.S., Vázquez-Laslop N., Neyfakh A.A., A protein that activates expression of a multidrug efflux transporter upon binding the transporter substrates, J. Biol. Chem., 1994, 269, 28506–28513

    CAS  PubMed  Google Scholar 

  44. Ahmed M., Lyass L., Markham P.N., Taylor S.S., Vázquez-Laslop N., Neyfakh A.A., Two highly similar multidrug transporters of Bacillus subtilis whose expression is differentially regulated, J. Bacteriol., 1995, 177, 3904–3910

    CAS  PubMed  Google Scholar 

  45. Poole K., Krebes K., McNally C., Neshat S., Multiple antibiotic resistance in Pseudomonas aeruginosa: evidence for involvement of an efflux operon, J. Bacteriol., 1993, 175, 7363–7372

    CAS  PubMed  Google Scholar 

  46. Lewis K., Multidrug-resistance pumps in bacteria: variations on a theme, Trends. Biochem. Sci., 1994, 19, 119–123

    Article  CAS  PubMed  Google Scholar 

  47. Nikaido H., Prevention of drug access to bacterial targets: permeability barriers and active efflux, Science, 1994, 264, 382–388

    Article  CAS  PubMed  Google Scholar 

  48. Borges-Walmsley M.I., McKeegan K.S., Walmsley A.R., Structure and function of efflux pumps that confer resistance to drugs, Biochem. J., 2003, 376, 313–338

    Article  CAS  PubMed  Google Scholar 

  49. Nishino K., Yamaguchi A., Role of histone-like protein H-NS in multidrug resistance of Escherichia coli, J. Bacteriol., 2004, 186, 1423–1429

    Article  CAS  PubMed  Google Scholar 

  50. Vermuë M., Sikkema J., Verheul A., Bakker R., Tramper J., Toxicity of homologous series of organic solvents for the Gram-positive bacteria Arthrobacter and Nocardia sp. and Gram-negative bacteria Acinetobacter and Pseudomonas sp., Biotechnol. Bioeng., 1993, 42, 747–758

    Article  PubMed  Google Scholar 

  51. Neumann G., Kabelitz N., Zehnsdorf A., Miltner A., Lippold H., Meyer D., et al., Prediction of the adaptability of Pseudomonas putida DOT-T1E to a second phase of a solvent for economically sound two-phase biotransformations, Appl. Environ. Microbiol., 2005, 71, 6606–6612

    Article  CAS  PubMed  Google Scholar 

  52. Aono R., Kobayashi H., Cell surface properties of organic solvent tolerant mutants of Escherichia coli K-12, Appl. Environ. Microbiol., 1997, 63, 3637–3642

    CAS  PubMed  Google Scholar 

  53. de Bont J.A.M., Solvent-tolerant bacteria in biocatalysis, Trends. Biotechnol., 1998, 16, 493–499

    Article  Google Scholar 

  54. de Carvalho C.C.C.R., Wick L.Y., Heipieper H.J., Cell wall adaptations of planktonic and biofilm Rhodococcus erythropolis cells to growth on C5 to C16 n-alkane hydrocarbons, Appl. Microbiol. Biotechnol., 2009, 82, 311–320

    Article  CAS  PubMed  Google Scholar 

  55. Pinkart H.C., White D.C., Phospholipid biosynthesis and solvent tolerance in Pseudomonas putida strains, J. Bacteriol., 1997, 179, 4219–4226

    CAS  PubMed  Google Scholar 

  56. Pinkart H.C., Wolfram J.W., Rodgers R., White D.C., Cell envelope changes in solvent-tolerant and solvent-sensitive Pseudomonas putida strains following exposure to o-xylene, Appl. Environ. Microbiol., 1996, 62, 1129–1132

    CAS  PubMed  Google Scholar 

  57. van Hamme J.D., Singh A., Ward O.P., Recent advances in petroleum microbiology, Microbiol. Mol. Biol. Rev., 2003, 67, 503–549

    Article  PubMed  CAS  Google Scholar 

  58. McLellan T., Ames G.F.-L., Nikaido K., Genetic variation in proteins: comparison of onedimensional and two-dimensional gel electrophoresis, Genetics, 1983, 104, 381–390

    CAS  PubMed  Google Scholar 

  59. Keweloh H., Weyrauch G., Rehm H.J., Phenolinduced membrane changes in free and immobilized Escherichia coli, Appl. Microbiol. Biotechnol., 1990, 33, 66–71

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mihaela Marilena Lăzăroaie.

About this article

Cite this article

Lăzăroaie, M.M. Investigation of saturated and aromatic hydrocarbon resistance mechanisms in Pseudomonas aeruginosa IBBML1 . cent.eur.j.biol. 4, 469–481 (2009). https://doi.org/10.2478/s11535-009-0050-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11535-009-0050-0

Keywords

Navigation