Skip to main content
Log in

Response Mechanisms in Serratia marcescens IBBPo15 During Organic Solvents Exposure

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Serratia marcescens strain IBBPo15 (KT315653) which possesses serratiopeptidase (ser) gene (KT894207) exhibited good solvent tolerance. During the exposure of S. marcescens IBBPo15 cells to 5 % organic solvents, n-decane was less toxic for this bacterium, compared with n-hexane, cyclohexane, ethylbenzene, toluene, and styrene. The exposure of the S. marcescens IBBPo15 cells to n-hexane, cyclohexane, ethylbenzene, toluene, and styrene induced the formation of large clusters, while in control and n-decane-exposed cells, only organization into small clusters was observed. The data obtained suggested that S. marcescens IBBPo15 cells produced some secondary metabolites (i.e., surfactant serrawettin, red pigment prodigiosin) which are well known as valuable molecules due to their large applications. The exposure of the bacterial cells to organic solvents induced secondary metabolites profile modifications. However, S. marcescens IBBPo15 possesses only alkB1, todM, rhlAB, pswP, mpr, and ser genes, the unspecific amplification of other fragments being acquired also when the primers for alkM1, xylM, ndoM, and C23DO genes were used. Modifications of DNA patterns were not depicted in S. marcescens IBBPo15 cells exposed to organic solvents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Molec Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  2. Anyanwu CU, Obi SKC, Okolo BN (2011) Lipopeptide biosurfactant production by Serratia marcescens NSK-1 strain isolated from petroleum contaminated soil. J Appl Sci Res 7:79–87

    CAS  Google Scholar 

  3. Bharmal MH, Jahagirdar N, Aruna K (2012) Study on optimization of prodigiosin production by Serratia marcescens MSK1 isolated from air. Int J Adv Biol Res 2:671–680

    Google Scholar 

  4. Gesheva V, Stackebrandt E, Vasileva-Tonkova E (2010) Biosurfactant production by halotolerant Rhodococcus fascians from Casey Station, Wilkes Land, Antarctica. Curr Microbiol 61:112–117

    Article  CAS  PubMed  Google Scholar 

  5. Hejazi A, Falkiner FR (1997) Serratia marcescens. J Med Microbiol 46:903–912

    Article  CAS  PubMed  Google Scholar 

  6. Iguchi A, Nagaya Y, Pradel E, Ooka T, Ogura Y, Katsura K, Kurokawa K, Oshima K, Hattori M, Parkhill J, Sebaihia M, Coulthurst SJ, Gotoh N, Thomson NR, Ewbank JJ, Hayashi T (2014) Genome evolution and plasticity of Serratia marcescens, an important multidrug-resistant nosocomial pathogen. Genome Biol Evol 6:2096–2110

    Article  PubMed  PubMed Central  Google Scholar 

  7. Jeon BY, Jung IL, Park DH (2011) Mineralization of petroleum contaminated wastewater by co-culture of petroleum-degrading bacterial community and biosurfactant-producing bacterium. J Environ Prot 2:895–902

    Article  CAS  Google Scholar 

  8. Kamble KD, Hiwarale VD (2012) Prodigiosin production from Serratia marcescens strains obtained from farm soil. Int J Environ Sci 3:631–638

    CAS  Google Scholar 

  9. Kim HS, Golyshin PN, Timmis KN (2007) Characterization and role of a metalloprotease induced by chitin in Serratia sp. KCK. J Ind Microbiol Biotechnol 34:715–721

    Article  CAS  PubMed  Google Scholar 

  10. Kohno T, Sugimoto Y, Sei K, Mori K (2002) Design of PCR primers and gene probes for general detection of alkane-degrading bacteria. Microbes Environ 17:114–121

    Article  Google Scholar 

  11. Li H, Tanikawa T, Sato Y, Nakagawa Y, Matsuyama T (2005) Serratia marcescens gene required for surfactant serrawettin W1 production encodes putative aminolipid synthetase belonging to nonribosomal peptide synthetase family. Microbiol Immunol 49:303–310

    Article  CAS  PubMed  Google Scholar 

  12. Mao-Hua W, Wu B, Ren W, He B-F (2010) Screening, characterization, and cloning of a solvent-tolerant protease from Serratia marcescens MH6. J Microbiol Biotechnol 20:881–888

    Article  Google Scholar 

  13. Marchesi JR, Sato T, Weightman AJ, Martin TA, Fry JC, Hiom SJ, Wade WG (1998) Design and evaluation of useful bacterium-specific PCR primers that amplify genes coding for bacterial 16S rRNA. Appl Environ Microbiol 64:795–799

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Márquez-Rocha FJ, Olmos-Soto J, Rosano-Hernández MC, Muriel-Garcia M (2005) Determination of the hydrocarbon-degrading metabolic capabilities of tropical bacterial isolates. Int Biodeterior Biodegrad 55:17–23

    Article  Google Scholar 

  15. Matsuyama T, Kaneda K, Nakagawa Y, Isa K, Hara-Hotta H, Yano I (1992) A novel extracellular cyclic lipopeptide which promotes flagellum-dependent and -independent spreading growth of Serratia marcescens. J Bacteriol 174:1769–1776

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Medina G, Juárez K, Valderrama B, Soberón-Chávez G (2003) Mechanism of Pseudomonas aeruginosa RhlR transcriptional regulation of the rhlAB promoter. J Bacteriol 185:5976–5983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Meliani A, Bensoltane A (2014) Enhancement of hydrocarbons degradation by use of Pseudomonas biosurfactants and biofilms. J Pet Environ Biotechnol 5:168. doi:10.4172/2157-7463.1000168

    Article  Google Scholar 

  18. Mesarch MB, Nakatsu CH, Nies L (2000) Development of catechol 2,3-dioxygenase-specific primers for monitoring bioremediation by competitive quantitative PCR. Appl Environ Microbiol 66:678–683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Okoro C, Agrawal A, Callbeck C (2012) Simultaneous biosurfactant production and hydrocarbon biodegradation by the resident aerobic bacterial flora of oil production skimmer pit at elevated temperature and saline conditions. Life Sci J 9:356–364

    Google Scholar 

  20. Rice SA, Koh KS, Queck SY, Labbate M, Lam KW, Kjelleberg S (2005) Biofilm formation and sloughing in Serratia marcescensare controlled by quorum sensing and nutrient cues. J Bacteriol 187:3477–3485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning, a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

    Google Scholar 

  22. Sardessai YN (2015) Insights into organic-solvent-tolerant bacteria and their biotechnological potentials. In: Borkar S (ed) Bioprospects of coastal eubacteria. Springer International Publishing, Switzerland, pp 129–149. doi:10.1007/978-3-319-12910-5_7

    Google Scholar 

  23. Stancu MM, Grifoll M (2011) Multidrug resistance in hydrocarbon-tolerant Gram-positive and Gram-negative bacteria. J Gen Appl Microbiol 57:1–18

    Article  CAS  PubMed  Google Scholar 

  24. Stella NA, Lahr RM, Brothers KM, Kalivoda EJ, Hunt KM, Kwak DH, Liu X, Shanks RMQ (2015) Serratia marcescens cyclic AMP receptor protein controls transcription of EepR, a novel regulator of antimicrobial secondary metabolites. J Bacteriol 197:2468–2478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molec Biol Evol 28:2731–2739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tanikawa T, Nakagawa Y, Matsuyama T (2006) Transcriptional downregulator HexS controlling prodigiosin and serrawettin W1 biosynthesis in Serratia marcescens. Microbiol Immunol 50:587–596

    Article  CAS  PubMed  Google Scholar 

  27. Tao F, Tang H, Gai Z, Su F, Wang X, He X, Xu P (2011) Genome sequence of Pseudomonas putida Idaho, a unique organic-solvent-tolerant bacterium. J Bacteriol 193:7011–7012

    Article  PubMed  PubMed Central  Google Scholar 

  28. Tischler D, Niescher S, Kaschabek SR, Schlömann M (2013) Trehalose phosphate synthases OtsA1 and OtsA2 of Rhodococcus opacus 1CP. FEMS Microbiol Lett 342:113–122

    Article  CAS  PubMed  Google Scholar 

  29. Wu T, Xie WJ, Yi YL, Li XB, Yang HJ, Wang J (2012) Surface activity of salt-tolerant Serratia spp. and crude oil biodegradation in saline soil. Plant Soil Environ 58:412–416

    CAS  Google Scholar 

Download references

Acknowledgments

The study was funded by the Project No. RO1567-IBB05/2015 from the Institute of Biology Bucharest of Romanian Academy. The author is grateful to Ana Dinu, Alexandru Brînzan, and Gabriel Mihai Maria for technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mihaela Marilena Stancu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stancu, M.M. Response Mechanisms in Serratia marcescens IBBPo15 During Organic Solvents Exposure. Curr Microbiol 73, 755–765 (2016). https://doi.org/10.1007/s00284-016-1108-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-016-1108-7

Keywords

Navigation