Skip to main content
Log in

Two methods to solve a fractional single phase moving boundary problem

  • Research Article
  • Published:
Central European Journal of Physics

Abstract

A moving boundary problem of a melting problem is considered in this study. A mathematical model using the Caputo fractional derivative heat equation is proposed in the paper. Since moving boundary problems are difficult to solve for the exact solution, two methods are presented to approximate the evolution of the temperature. To simplify the computation, a similarity variable is adopted in order to reduce the partial differential equations to ordinary ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Gorenflo, F. Mainardi, A. Vivoli, Chaos Soliton. Fract. 87, 34 (2007)

    MathSciNet  Google Scholar 

  2. A. A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations (Elsevier, 2006)

    MATH  Google Scholar 

  3. G. M. Zaslavsky, Phys. Rep. 431, 371 (2002)

    MathSciNet  Google Scholar 

  4. A. Nnanna, A. Haji-Sheikh, K.T. Harris, J. Porous Media 31, 8 (2005)

    Google Scholar 

  5. Y. Povestenko, Mech. Res. Commun. 436, 37 (2010)

    Google Scholar 

  6. B. Li, J. Wang, Phys. Rev. Lett. 044301, 91 (2003)

    Google Scholar 

  7. R. Metzler, I.M. Sokolov, Phys. Rev. Lett. 089401, 92 (2004)

    Google Scholar 

  8. B. Li, J. Wang, Phys. Rev. Lett. 089402, 92 (2004)

    Article  Google Scholar 

  9. X. Y. Jiang, M.Y. Xu, Physica A 3368, 389 (2010)

    MathSciNet  Google Scholar 

  10. H. R. Ghazizadeh, A. Azimi, M. Maerefat, Int. J. Heat Mass Tran. 2095, 55 (2012)

    Google Scholar 

  11. H. Xu, H.T. Qi, X.Y. Jiang, Chinese Phys. B 014401, 22 (2013)

    Google Scholar 

  12. J. Y. Liu, M.Y. Xu, J. Math. Anal. Appl. 536, 351 (2009)

    Google Scholar 

  13. V. R. Voller, Int. J. Heat Mass Tran., 5622, 53 (2010)

    Google Scholar 

  14. G. C. Wu, Int. Rev. Chem. Eng. 505, 4 (2012)

    Google Scholar 

  15. G. C. Wu, Chinese Phys. B 120504, 21 (2012)

    Google Scholar 

  16. H. Jafari, S.A. Yousefi, M.A. Firoozjae, Commun. Frac. Calc. 9, 2(1) (2011)

  17. J. L. Vazquez, Nonlinear Part. D. E. 271, 7 (2012)

    Google Scholar 

  18. J. Histov, Thermal Sci. 291, 14 (2010)

    Google Scholar 

  19. J. Crank, Free and Moving boundary problems (Clarendon Press, 1984).

    MATH  Google Scholar 

  20. J. Singh, P. Gupta, K. Rai, Appl. Math. Model. 1937, 35 (2011)

    MathSciNet  Google Scholar 

  21. Y. Luchko, R. Gorenflo, Fract. Calc. Appl. Anal. 63, 1 (1998)

    MathSciNet  Google Scholar 

  22. X. C. Li, M.Y. Xu, S.W. Wang, J. Phys. A: Math. Theor. 155202, 41 (2008)

    Google Scholar 

  23. V. D. Djordjevica, T.M. Atanackovicb, J. Comput. Appl. Math. 701, 222 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xicheng Li.

About this article

Cite this article

Li, X., Wang, S. & Zhao, M. Two methods to solve a fractional single phase moving boundary problem. centr.eur.j.phys. 11, 1387–1391 (2013). https://doi.org/10.2478/s11534-013-0227-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11534-013-0227-z

Keywords

Navigation