Skip to main content
Log in

An instantaneous semi-Lagrangian approach for boundary control of a melting problem

  • Published:
Applications of Mathematics Aims and scope Submit manuscript

Abstract

In this paper, a sub-optimal boundary control strategy for a free boundary problem is investigated. The model is described by a non-smooth convection-diffusion equation. The control problem is addressed by an instantaneous strategy based on the characteristics method. The resulting time independent control problems are formulated as function space optimization problems with complementarity constraints. At each time step, the existence of an optimal solution is proved and first-order optimality conditions with regular Lagrange multipliers are derived for a penalized-regularized version. The performance of the overall approach is illustrated by numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. U. G. Abdulla: On the optimal control of the free boundary problems for the second order parabolic equations. I: Well-posedness and convergence of the method of lines. Inverse Probl. Imaging 7 (2013), 307–340.

    Article  MathSciNet  Google Scholar 

  2. U. G. Abdulla: On the optimal control of the free boundary problems for the second order parabolic equations. II: Convergence of the method of finite differences. Inverse Probl. Imaging 10 (2016), 869–898.

    Article  MathSciNet  Google Scholar 

  3. U. G. Abdulla, J. M. Goldfarb: Frechet differentability in Besov spaces in the optimal control of parabolic free boundary problems. J. Inverse Ill-Posed Probl. 26 (2018), 211–227.

    Article  MathSciNet  Google Scholar 

  4. U. G. Abdulla, B. Poggi: Optimal Stefan problem. Calc. Var. Partial Differ. Equ. 59 (2020), Article ID 61, 40 pages.

  5. S. N. Al-Saadi, Z. J. Zhai: Modeling phase change materials embedded in building enclosure: A review. Renew. Sust. Energy Rev. 21 (2013), 659–673.

    Article  Google Scholar 

  6. B. Baran, P. Benner, J. Heiland, J. Saak: Optimal control of a Stefan problem fully coupled with incompressible Navier-Stokes equations and mesh movement. An. Ştiinţ Univ. “Ovidius” Constanţa, Ser. Mat. 26 (2018), 11–40.

    MathSciNet  MATH  Google Scholar 

  7. M. K. Bernauer, R. Herzog: Optimal control of the classical two-phase Stefan problem in level set formulation. SIAM J. Sci. Comput. 33 (2011), 342–363.

    Article  MathSciNet  Google Scholar 

  8. H. Choi, M. Hinze, K. Kunisch: Instantaneous control of backward-facing step flows. Appl. Numer. Math. 31 (1999), 133–158.

    Article  MathSciNet  Google Scholar 

  9. H. Choi, R. Temam, P. Moin, J. Kim: Feedback control for unsteady flow and its application to the stochastic Burgers equation. J. Fluid Mech. 253 (1993), 509–543.

    Article  MathSciNet  Google Scholar 

  10. V. K. Dhir: Phase change heat transfer—a perspective for the future. Proceedings of Rohsenow Symposium on Future Trends in Heat Transfer. Massachusetts Institute of Technology, Cambridge, 2003, 6 pages; Available at http://web.mit.edu/hmtl/www/papers/DHIR.pdf.

  11. A. Esen, S. Kutluay: A numerical solution of the Stefan problem with a Neumann-type boundary condition by enthalpy method. Appl. Math. Comput. 148 (2004), 321–329.

    MathSciNet  MATH  Google Scholar 

  12. L. C. Evans: Partial Differential Equations. Graduate Studies in Mathematics 19. American Mathematical Society, Providence, 1998.

    MATH  Google Scholar 

  13. N. L. Gol’dman: Inverse Stefan Problems. Mathematics and Its Applications 412. Kluwer Academic Publishers, Dordrecht, 1997.

    Book  Google Scholar 

  14. M. Hintermüller, A. Laurain, C. Löbhard, C. N. Rautenberg, T. M. Surowiec: Elliptic mathematical programs with equilibrium constraints in function space: Optimality conditions and numerical realization. Trends in PDE Constrained Optimization. International Series of Numerical Mathematics 165. Springer, Cham, 2014, pp. 133–153.

    MATH  Google Scholar 

  15. M. Hintermüller, C. Löbhard, M. H. Tber: An 1-penalty scheme for the optimal control of elliptic variational inequalities. Numerical Analysis and Optimization. Springer Proceedings in Mathematics & Statistics 134. Springer, Cham, 2015, pp. 151–190.

    MATH  Google Scholar 

  16. M. Hinze, S. Ziegenbalg: Optimal control of the free boundary in a two-phase Stefan problem. J. Comput. Phys. 223 (2007), 657–684.

    Article  MathSciNet  Google Scholar 

  17. M. Hinze, S. Ziegenbalg: Optimal control of the free boundary in a two-phase Stefan problem with flow driven by convection. ZAMM, Z. Angew. Math. Mech. 87 (2007), 430–448.

    Article  MathSciNet  Google Scholar 

  18. D. Kinderlehrer, G. Stampacchia: An Introduction to Variational Inequalities and Their Applications. Pure and Applied Mathematics 88. Academic Press, New York, 1980.

    MATH  Google Scholar 

  19. O. Pironneau: On the transport-diffusion algorithm and its applications to the Navier-Stokes equations. Numer. Math. 38 (1982), 309–332.

    Article  MathSciNet  Google Scholar 

  20. O. Pironneau, S. Huberson: Characteristic-Galerkin and the particle method for the convection-diffusion equation and the Navier-Stokes equations. Lectures in Applied Mathematics 28. Vortex Dynamics and Vortex Methods. American Mathematical Society, Providence, 1991, pp. 547–565.

    MATH  Google Scholar 

  21. F. Tröltzsch: Optimal Control of Partial Differential Equations: Theory, Methods, and Applications. Graduate Studies in Mathematics 112. American Mathematical Society, Providence, 2010.

    MATH  Google Scholar 

  22. J. Zowe, S. Kurcyusz: Regularity and stability for the mathematical programming problem in Banach spaces. Appl. Math. Optim. 5 (1979), 49–62.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moulay Hicham Tber.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mezzan, Y., Tber, M.H. An instantaneous semi-Lagrangian approach for boundary control of a melting problem. Appl Math 66, 725–744 (2021). https://doi.org/10.21136/AM.2021.0028-20

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.21136/AM.2021.0028-20

Keywords

MSC 2020

Navigation