Skip to main content
Log in

Boundary functions determination in an inverse time fractional heat conduction problem

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

In this study, we propose an effective approach for the numerically solution of a class of one-dimensional nonlinear inverse time fractional heat conduction problems. The boundary heat fluxes are considered as unknown functions of the boundary temperatures. A numerical method based on the finite difference and mollification approaches is developed to determine the unknown boundary functions. The stability and convergence of the numerical method are proved. Four test problems are conducted to illustrate the ability of the numerical algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  • Berkowitz B, Scher H, Silliman SE (2000) Anomalous transport in laboratory-scale, heterogeneous porusmedia. Water Resour Res 36:149–158

    Article  Google Scholar 

  • Chechkin AV, Gorenflo R, Sokolov IM, Gonchar VY (2003) Distributed order time fractional diffusion equation. Fract Calc Appl Anal 6:259–279

    MathSciNet  MATH  Google Scholar 

  • Chechkin AV, Gorenflo R, Sokolov IM (2005) Fractional diffusion in inhomogeneous media. J Phys A Math Gen 38:679–684

    Article  MathSciNet  Google Scholar 

  • Cheng J, Nakagawa J, Yamamoto M, Yamazaki T (2009) Uniqueness in an inverse problem for a onedimensional fractional diffusion equation. Inverse Probl 25:115002

    Article  Google Scholar 

  • Dehghana M, Yousefi SA, Rashedi K (2013) Ritz–Galerkin method for solving an inverse heat conduction problem with a nonlinear source term via Bernstein multi-scaling functions and cubic B-spline functions. Inverse Probl Sci Eng 21(3):500–523

    Article  MathSciNet  Google Scholar 

  • Garshasbi M, Dastour H (2015) Estimation of unknown boundary functions in an inverse heat conduction problem using a mollified marching scheme. Numer Algorithms 68:769–790

    Article  MathSciNet  Google Scholar 

  • Garshasbi M, Dastour H (2016) A mollified marching solution of an inverse ablation-type moving boundary problem. Comput Appl Math 35:6–73

    Article  MathSciNet  Google Scholar 

  • Garshasbi M, Reihani P, Dastour H (2012) A stable numerical solution of a class of semi-linear Cauchy problems. J Adv Res Dyn Control Syst 4:56–67

    MathSciNet  Google Scholar 

  • Giona M, Gerbelli S, Roman HE (1992) Fractional diffusion equation and relaxation in complex viscoelastic materials. Phys A Stat Mech Appl 191:449–453

    Article  Google Scholar 

  • Hatano Y, Hatano N (1998) Dispersive transport of ions in column experiments: an explanation of long-tailed profiles. Water Resour Res 34:1027–33

    Article  Google Scholar 

  • Jalalvand M, Jazbi B, Mokhtarzadeh MR (2013) A finite difference method for the smooth solution of linear Volterra integral equations. Int J Non-linear Anal Appl 4(2):1–10

    MATH  Google Scholar 

  • Jin BB, Rundell W (2012) An inverse problem for a one dimensional time fractional diffusion problem. Inverse Probl 28:075010

    Article  MathSciNet  Google Scholar 

  • Lin Y, Xu C (2007) Finite difference-spectral approximation for the time-fractional diffusion equation. J Comput Phys 225:1533–1552

    Article  MathSciNet  Google Scholar 

  • Luchko Y (2009) Maximum principle for the generalized time-fractional diffusion equation. J Math Anal Appl 351:218–223

    Article  MathSciNet  Google Scholar 

  • Luchko Y (2011) Maximum principle and its application for the time-fractional diffusion equations. Fract Calc Appl Anal 14:110–124

    MathSciNet  MATH  Google Scholar 

  • Mainadri F (1996) The fundamental solutions for the fractional diffusion-wave equation. Appl Math Lett 9:23–28

    Article  MathSciNet  Google Scholar 

  • Metzler R, Klafter J (2000) The random walks guide to anomalous diffusion: a fractional dynamics approach. Phys Rep 339(1):1–77

    Article  MathSciNet  Google Scholar 

  • Murio DA (2002) Mollification and space marching. In: Woodbury K (ed) Inverse engineering handbook. CRC Press, Boca Raton

    Google Scholar 

  • Murio DA (2006) On the stable numerical evaluation of Caputo fractional derivatives. Comput Math Appl 51:1539–1550

    Article  MathSciNet  Google Scholar 

  • Murio DA (2007) Implicit finite difference approximation for time fractional diffusion equations. Comput Math Appl 56:1138–1145

    Article  MathSciNet  Google Scholar 

  • Murio DA (2008) Time fractional IHCP with Caputo fractional derivatives. Comput Math Appl 56:2371–2381

    Article  MathSciNet  Google Scholar 

  • Murio DA, Mejia CE (2008) Generalized time fractional IHCP with Caputo fractional derivatives. J Phys 135:1–8

    Google Scholar 

  • Nigmatullin RR (1986) The realization of the generalized transfer equation in a medium with fractal geometry. Phys Stat Solidi B 133:425–30

    Article  Google Scholar 

  • Podlubny I (1999) Fractional differential equations. Academic Press, San Diego

    MATH  Google Scholar 

  • Povstenko Y (2015) Linear fractional diffusion-wave equation for scientists and engineers. Springer International Publishing, Cham

    Book  Google Scholar 

  • Roman HE, Alemany PA (1994) Continuous-time random walks and the fractional diffusion equation. J Phys A Math Gen 27:3407–3410

    Article  MathSciNet  Google Scholar 

  • Safarzade A, Heidari H (2019) Finite time mix synchronization of delay fractional-order chaotic systems. Glob Anal Discr Math 3(1):33–52

    Google Scholar 

  • Sakamoto K, Yamamoto M (2011) Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems. J Math Anal Appl 382(1):426–447

    Article  MathSciNet  Google Scholar 

  • Sakamoto K, Yamamoto M (2010) Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems. In: Preprint UTMS, 2010–2014

  • Shidfar A, Karamali GR, Damirchi J, Reihani P (2006) An inverse heat conduction problem with a nonlinear source term. Nonlinear Anal Theory Methods Appl 65:615–621

    Article  MathSciNet  Google Scholar 

  • Sokolov IM, Klafter J, Blumen A (2002) Fractional kinetics. Phys Today 55:48–54

    Article  Google Scholar 

  • Wei T, Zhang ZQ (2013) Reconstruction of a time-dependent source term in a time-fractional diffusion equation. Eng Anal Bound Elem 37:23–31

    Article  MathSciNet  Google Scholar 

  • Zhang Y, Xu X (2011) Inverse source problem for a fractional diffusion equation. Inverse Probl 27:035010

    Article  MathSciNet  Google Scholar 

  • Zhou L, Selim HM (2003) Application of the fractional advection–dispersion equations in porous media. Soil Sci Soc Am J 67(4):1079–1084

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the referees for their valuable comments which helped to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Garshasbi.

Additional information

Communicated by José Tenreiro Machado.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Toubaei, S., Garshasbi, M. & Reihani, P. Boundary functions determination in an inverse time fractional heat conduction problem. Comp. Appl. Math. 38, 190 (2019). https://doi.org/10.1007/s40314-019-0944-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40314-019-0944-z

Keywords

Mathematics Subject Classification

Navigation