Skip to main content
Log in

Dynamic pressure thermal analysis of double-base propellants containing RDX

  • Research Article
  • Published:
Central European Journal of Chemistry

Abstract

The thermal decomposition of five double-base propellants modified with RDX was studied by dynamic pressure thermal analysis to determine the effect of RDX content (20–60 wt.%) on performance. All have good stability. Both stability and activation energy increase as RDX increases from 20% to 50% then decrease; 50% RDX performs best. The decomposition mechanism is affected by RDX content and temperature. Increasing temperature induces autocatalysis and accelerates decomposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.K. Abhay, P.D. Devendra, Res. J. Chem. Environ. 14, 94 (2010)

    Google Scholar 

  2. J. Thepenier, G. Fonblanc, Acta Astronaut. 48, 245 (2001)

    Article  CAS  Google Scholar 

  3. J.R. Lurnan, B. Wehrman, K.K. Kuo, R.A. Yetter, N.M. Masoud, T.G. Manning, L.E. Harris, H.A. Bruck, P. Combust. Inst. 31, 2089 (2007)

    Article  Google Scholar 

  4. T.S. Kokan, J.R. Olds, J.M. Seitzman, P.J. Ludovice, J. Thermophys. Heat Tr. 22, 727 (2008)

    Article  CAS  Google Scholar 

  5. D.M. Badgujar, M.B. Talawar, S.N. Asthana, P.P. Mahulikar, J. Hazard. Mater. 151, 289 (2008)

    Article  CAS  Google Scholar 

  6. T.M. Klapotke, G. Steinhauser, Angew. Chem. Int. Ed. 47, 3330 (2008)

    Article  Google Scholar 

  7. M.B. Talawar, R. Sivabalan, T. Mukundan, H. Muthurajan, A.K. Sikder, B.R. Gandhe, A.S. Rao, J. Hazard. Mater. 161, 589 (2009)

    Article  CAS  Google Scholar 

  8. B. A. McDonald, Propell. Explos. Pyrot. 36, 576 (2011)

    Article  CAS  Google Scholar 

  9. X.L. Xing, F.Q. Zhao, S.N. Ma, S.Y. Xu, L.B. Xiao, H.X. Gao, R.Z. Hu, J. Therm. Anal. Calorim. 110, 1451 (2012)

    Article  CAS  Google Scholar 

  10. A.P. Denisyuk, Y.G. Shepelev, D.L. Rusin, I.V. Shumskii, Combust. Explos. Shock Waves 37, 190 (2001)

    Article  Google Scholar 

  11. T. Naya, M. Kohga, Aerosp. Sci. Technol. 27, 209 (2013)

    Article  Google Scholar 

  12. R.R. Sanghavi, P.J. Kamale, M.A.R. Shaikh, S.D. Shelar, K.S. Kumar, A. Singh, J. Hazard. Mater. 143, 532 (2007)

    Article  CAS  Google Scholar 

  13. L.L. Liu, F.S. Li, L.H. Tan, M. Li, Y. Yang, Chin. J. Chem. Eng. 12, 595 (2004)

    CAS  Google Scholar 

  14. C. Oommen, S. R. Jain, J. Hazard. Mater. 67, 253 (1999)

    Article  CAS  Google Scholar 

  15. M. Kohga, K. Okamoto, Combust. Flame 158, 573 (2011)

    Article  CAS  Google Scholar 

  16. J.L. Shamshina, M. Smiglak, D.M. Drab, T.G. Parker, H.W.H. Dykes, Jr., R. Di Salvo, A.J. Reich, R.D. Rogers, Chem. Commun. 46, 8965 (2010)

    Article  CAS  Google Scholar 

  17. S. Sadeghipour, J. Ghaderian, M.A. Wahid, In: M.A. Wahid, S. Samion, J.M. Sheriff, N.A.C. Sidik (Ed.), 4th International Meeting of Advances in Thermofluids, 3–4 Oct. 2011, Melaka, Malaysia (American Institute of Physics, USA, 2012) 100

  18. L. Meda, G. Marra, L. Galfetti, S. Inchingalo, F. Severini, L. De Luca, Compos. Sci. Technol. 65, 769 (2005)

    Article  CAS  Google Scholar 

  19. L. De Luca, F. Cozzi, G. Germiniasi, I. Ley, A.A. Zenin, Combust. Flame 118, 248 (1999)

    Article  CAS  Google Scholar 

  20. R.S. Damse, A. Singh, H. Singh, Propell. Explos. Pyrot. 32, 52 (2007)

    Article  CAS  Google Scholar 

  21. W.W. Jing, Z.M. Dang, G.P. Yang, J. Therm. Anal. Calorim. 79, 107 (2005)

    Article  CAS  Google Scholar 

  22. T.B. Brill, P.E. Gongwer, G.K. Williams, J. Phys. Chem. 98, 12242 (1994)

    Article  CAS  Google Scholar 

  23. G. Hussain, G.J. Rees, Fuel 74, 273 (1995)

    Article  CAS  Google Scholar 

  24. J.S. Lee, C.K. Hsu, C.L. Chang, Thermochi. Acta 392, 173 (2002)

    Article  Google Scholar 

  25. D. Trache, K. Khimeche, Fire Mater. 37, 328 (2013)

    Article  CAS  Google Scholar 

  26. J.S. You, S.C. Kang, S.K. Kweon, H.L. Kim, Y.H. Ahn, S.T. Noh, Thermochim. Acta 537, 51 (2012)

    Article  CAS  Google Scholar 

  27. Y. Li, C. Kou, C. Huang, Y. Cheng, J. Therm. Anal. Calorim. 109, 171 (2012)

    Article  CAS  Google Scholar 

  28. Z. Tang, Y. Ren, L. Yang, T. Zhang, X. Qiao, J. Zhang, Z. Zhou, F. Zhao, Y. Dang, S. Xu, J. Yi, Chin. J. Chem. 29, 411 (2011)

    Article  CAS  Google Scholar 

  29. J.H. Yi, F.Q. Zhao, B.Z. Wang, Q. Liu, C. Zhou, R.Z. Hu, Y.H. Ren, S.Y. Xu, K.Z. Xu, X.N. Ren, J. Hazard. Mater. 181, 432 (2010)

    Article  CAS  Google Scholar 

  30. M. Chovancova, S. Zeman, Thermochim. Acta 460, 67 (2007)

    Article  CAS  Google Scholar 

  31. J. Selesovsky, M. Krupka, 7th International Fall Seminar on Propellants, Explosives and Pyrotechnics, Xi an, China (Theory and practice of energetic materials, 2007) 381

    Google Scholar 

  32. T.L. Zhang, X.C. Hu, L. Yang, K.Y. Li, J.G. Zhang, W.J. Wang, L.Q. Wang, Chin. J. Energ. Mater. 17, 549 (2009) (in Chinese)

    CAS  Google Scholar 

  33. R. Liu, T.L. Zhang, L. Yang, Z.N. Zhou, X.C. Hu, Cent. Eur. J. Chem. 11, 774 (2013)

    Article  CAS  Google Scholar 

  34. R. Liu, Z.N. Zhou, Y.L. Yin, L. Yang, T.L. Zhang, Thermochim. Acta 537, 13 (2012)

    Article  CAS  Google Scholar 

  35. R. Liu, Y.L. Yin, T.L. Zhang, L. Yang, J.G. Zhang, Z.N. Zhou, X.J. Qiao, W.J. Wang, L.Q. Wang, Chin. J. Explos. Propell. 34, 21 (2011) (in Chinese)

    Google Scholar 

  36. R. Liu, Y.L. Yin, T.L. Zhang, L. Yang, J.G. Zhang, Z.N. Zhou, X.J. Qiao, W.J. Wang, L.Q. Wang, Chin. J. Energ. Mater. 19, 650 (2011) (in Chinese)

    Google Scholar 

  37. Y.L. Yin, L. Yang, X.C. Hu, Z.M. Li, K.Y. Li, T.L. Zhang, J.G. Zhang, Chin. J. Energ. Mater. 18, 387 (2010) (in Chinese)

    CAS  Google Scholar 

  38. R. Liu, W.F. Yu, T.L. Zhang, L. Yang, Z.N. Zhou, Phys. Chem. Chem. Phys. 15, 7889 (2013)

    Article  CAS  Google Scholar 

  39. GJB 772A-97. Method 501.2: Vacuum stability test — Method of pressure transducer (Commission of science technology and industry for national defense, Beijing, 1997) 156 (in Chinese)

    Google Scholar 

  40. GJB 5891. 2-2006. Test method of loading material for initiating explosive device Part 20: Measurement of deflagration point for primary explosive — Method of 5s delay time (National Defense Science, Technology and Industry Committee, Beijing, 2006) 67 (in Chinese)

    Google Scholar 

  41. R.Z. Hu, S.L. Gao, F.Q. Zhao, Q.Z. Shi, T.L. Zhang, J.J. Zhang, Thermal Analysis Kinetics, 2nd edition (Science Press, Beijing, 2008) 64, 80, 151 (in Chinese)

    Google Scholar 

  42. J.G.R. Poco, H. Furlan, R. Giudici, J. Phys. Chem. B 106, 4873 (2002)

    Article  CAS  Google Scholar 

  43. A.K. Galwey, M. Mortimer, Int. J. Chem. Kinet. 38, 464 (2006)

    Article  CAS  Google Scholar 

  44. P.J. Barrie, Phys. Chem. Chem. Phys. 14, 318 (2012)

    Article  CAS  Google Scholar 

  45. P.J. Barrie, Phys. Chem. Chem. Phys. 14, 327 (2012)

    Article  CAS  Google Scholar 

  46. S. Vyazovkin, A.K. Burnham, J.M. Criado, L.A. Perez-Maqueda, C. Popescu, N. Sbirrazzuoli, Thermochim. Acta 520, 1 (2011)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tonglai Zhang.

Electronic supplementary material

About this article

Cite this article

Liu, R., Zhang, T., Yang, L. et al. Dynamic pressure thermal analysis of double-base propellants containing RDX. cent.eur.j.chem. 12, 672–677 (2014). https://doi.org/10.2478/s11532-014-0524-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11532-014-0524-4

Keywords

Navigation