Skip to main content
Log in

The effect of aluminium oxide on the reduction of cobalt oxide and thermostabillity of cobalt and cobalt oxide

  • Research Article
  • Published:
Central European Journal of Chemistry

Abstract

During precipitation and calcination at 200°C nanocrystalline Co3O4 was obtained with average size crystallites of 13 nm and a well developed specific surface area of 44 m2 g−1. A small addition of a structural promoter, e.g. Al2O3, increases the specific surface area of the cobalt oxide (54 m2 g−1) and decreases the average size of crystallites (7 nm). Al2O3 inhibits the reduction process of Co3O4 by hydrogen. Reduction of cobalt oxide with aluminium oxide addition runs by equilibrium state at all the respective temperatures. The apparent activation energy of the recrystallization process of the nanocrystalline cobalt promoted by the aluminium oxide is 85 kJ mol−1. Aluminium oxide improves the thermostability of both cobalt oxide and the cobalt obtained as a result of oxide phase reduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Weichel, P.J. Moller, Surf. Sci. 399, 219 (1998)

    Article  CAS  Google Scholar 

  2. F. Svegl, B. Orel, M.G. Hutchins, K. Kalcher, J. Electrochem. Soc. 143, 1532 (1996)

    Article  CAS  Google Scholar 

  3. M. Ando, T. Kobayashi, S. Iijima, M. Haruta, J. Mater. Chem. 9, 1779 (1997)

    Article  Google Scholar 

  4. A.M. Morales, C.M. Lieber, Science 279, 208 (1998)

    Article  CAS  Google Scholar 

  5. C.A. Mirkin, Science 286, 2095 (1999)

    Article  CAS  Google Scholar 

  6. Y. Jang, H. Wang, Y. Chiang, J. Mater. Chem. 8, 2761 (1998)

    Article  CAS  Google Scholar 

  7. S. Sakamato, M. Yoshinaka, K. Hirota, O. Yamaguchi, J. Am. Ceram. Soc. 80, 267 (1997)

    Article  Google Scholar 

  8. B.B. Lakshmi, C.J. Patrissi, C.R. Martin, Chem. Mater. 9, 2544 (1997) DOI:10.1021/cm970268y

    Article  CAS  Google Scholar 

  9. U. Morales, A. Camper, O. Solrzaferia, J. New Mater. Electrochem. System 89, 89 (1999)

    Google Scholar 

  10. M. Sato, H. Hara, H. Kuritani, T. Nishide, Solar Energy Mater. Solar Cells 45, 43 (1997)

    Article  CAS  Google Scholar 

  11. R. Vijaya Kumar, Y. Diamant, A. Gedanken, Chem. Mater. 12, 2301 (2000) DOI:10.1021/cm000166z

    Article  Google Scholar 

  12. J.-H. Smatt, C. Weidenthaler, J.B. Rosenholm, M. Linden, Chem. Mater. 18, 1443–1450 (2006) DOI: 10.1021/cm051880p

    Article  Google Scholar 

  13. G. Binotto, D. Larcher, A.S. Prakash, R.H. Urbina, M.S. Hegde, J.-M. Tarascon, Chem. Mater. 19, 3032 (2007) DOI: 10.1021/cm070048c

    Article  CAS  Google Scholar 

  14. E. Iglesia, Applied Catal. A. 161, 59 (1997)

    Article  CAS  Google Scholar 

  15. A.Y. Khodakow, W. Chu, P. Fongarland, Chem. Rev. 107, 1692 (2001)

    Article  Google Scholar 

  16. X. Gao, C.J. Huang, N.W. Zhang, J.H. Li, W.Z. Wenig, H.L. Wan, Catal. Today 131, 211 (2008)

    Article  CAS  Google Scholar 

  17. D. Potoczna-Petru, L. Kępiński, Catal. Lette. 73, 1 (2001)

    Article  Google Scholar 

  18. R. Bechara, D. Balloy, J.-Y. Dauphin, J. Grimblot, Chem. Mater. 11, 1703 (1999) DOI: 10.1021/cm981015n

    Article  CAS  Google Scholar 

  19. Z. Lendzion-Bieluń, M. Podsiadły, U. Narkiewicz, W. Arabczyk, Rev. Adv. Mater. Sci. 12, 145 (2006)

    Article  Google Scholar 

  20. C.H. Bartholomew, Stud. Surf. Sci. Cat. 88, 1 (1994)

    Article  CAS  Google Scholar 

  21. J. Sehested, J.A.P. Gelten, S. Helveg, Appl. Catal. A 309, 237 (2006)

    Article  CAS  Google Scholar 

  22. L. Diandra, M. Leslie-Pelecky, T. Bonder, E. Martin, M. Kirkpatrick, Y. Liu, X.Q. Zhang, D.R. Rieke, Chem. Mater. 10, 3732 (1998) DOI:10.1021/cm980530i

    Article  Google Scholar 

  23. Y. Ji, Z. Zhao, A. Duan, G. Jiang, J. Liu, J. Phys. Chem. C 113, 7186 (2009) DOI: 10.1021/jp8107057

    Article  CAS  Google Scholar 

  24. W. Arabczyk, U. Narkiewicz, D. Moszyński, Langmuir, 15(18) 5785 (1999)

    Article  CAS  Google Scholar 

  25. W. Arabczyk, I. Jasińska, K. Lubkowski, Reac. Kinet. and Catal. Lett. 83(2), 385 (2004)

    Article  CAS  Google Scholar 

  26. W. Arabczyk, I. Jasińska, (2004), 13th Internat. Congress on Catalysis, 11–16 July 2004 a, Paris, France, (Congress Abstract book, France, 2004) 1–381

    Google Scholar 

  27. W. Arabczyk, I. Jasińska, Z. Lendzion-Bieluń, Catal. Today (2010) DOI:10.1016/j.cattod.2010.09.016

  28. J.P. Bournonville, G. Martino, Stud. Surf. Sci. Catal. 6, 159 (1980)

    Article  CAS  Google Scholar 

  29. C.H. Bartholomew, W. Sorenson, J. Catal. 81, 131 (1983)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zofia Lendzion-Bieluń.

About this article

Cite this article

Lendzion-Bieluń, Z., Jędrzejewski, R. & Arabczyk, W. The effect of aluminium oxide on the reduction of cobalt oxide and thermostabillity of cobalt and cobalt oxide. cent.eur.j.chem. 9, 834–839 (2011). https://doi.org/10.2478/s11532-011-0059-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11532-011-0059-x

Keywords

Navigation