Skip to main content
Log in

Activation of Nickel Oxide Catalysts Modified with Cobalt, Cerium, Manganese, and Zirconium

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

The activation of a series of catalysts with the general formula Ni0.9M0.1O (M = Co, Ce, Mn, and Zr) synthesized by coprecipitation and the effect of modifying additives on the phase composition and structure of these catalysts were studied. The effect of additives on the initial state of the samples was studied by X-ray diffraction (XRD) analysis, and their role in the process of NiO reduction was studied using in situ XRD analysis and temperature-programmed reduction with hydrogen (TPR-H2). It was found that the modifiers changed the structure and microstructure of the initial samples to increase the specific surface area and decrease the average coherent scattering region (CSR) sizes of NiO. The introduction of Mn and Co led to the formation of substitutional solid solutions with the oxide NiO. For Ce and Zr, the release of the oxide CeO2 and X-ray amorphous ZrOx was observed. The use of these additives led to an increase in the temperature of NiO reduction to a metallic state compared to that of the massive oxide. In addition, the effect of modifying additives on the particle size of the final metal was revealed. The use of Ce and Mn decreased the average CSR size of Ni by a factor of 2–5 compared to that of massive NiO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Alekseeva, M.V., Rekhtina, M.A., Lebedev, M.Y., Zavarukhin, S.G., Kaichev, V.V., Venderbosch, R.H., and Yakovlev, V.A., ChemistrySelect, 2018, vol. 3, p. 5153.

    Article  CAS  Google Scholar 

  2. Kukushkin, R.G., Eletskii, P.M., Bulavchenko, O.A., Saraev, A.A., and Yakovlev, V.A., Catal. Ind., 2019, vol. 11. p. 198.

    Article  Google Scholar 

  3. Smirnov, A.A., Khromova, S.A., Ermakov, D.Y., Bulavchenko, O.A., Saraev, A.A., Aleksandrov, P.V., Kaichev, V.V., and Yakovlev, V.A., Appl. Catal. A: Gen., 2016, vol. 514, p. 224.

    Article  CAS  Google Scholar 

  4. Phimsen, S., Kiatkittipong, W., Yamada, H., Tagawa, T., Kiatkittipong, K., Laosiripojana, N., and Assabumrungrat, S., Energy Convers. Manage., 2017, vol. 151, pp. 324–333.

    Article  CAS  Google Scholar 

  5. Liu, Y., Yao, L., Xin, H., Wang, G., Li, D., and Hu, C., Appl. Catal. B: Environ., 2015, vols. 174–175, p. 504.

    Article  Google Scholar 

  6. Laurent, E. and Delmon, B., Stud. Surf. Sci. Catal., 1994, vol. 88, p. 459.

    Article  CAS  Google Scholar 

  7. Mo, W., Ma, F., Ma, Y., and Fan, X., Int. J. Hydrogen Energy, 2019, vol. 44, p. 24510.

    Article  CAS  Google Scholar 

  8. Sánchez, J., Tallafigo, M.F., Gilarranz, M.A., and Rodríguez, F., Energy Fuels, 2006, vol. 20, p. 245.

    Article  Google Scholar 

  9. Kobayashi, Y., Horiguchi, J., Kobayashi, S., Yamazaki, Y., Omata, K., Nagao, D., Konno, M., and Yamada, M., Appl. Catal. A: Gen., 2011, vol. 395, p. 129.

    Article  CAS  Google Scholar 

  10. Zhang, L., Lin, J., and Chen, Y., J. Chem. Soc., Faraday Trans., 1992, vol. 88, p. 2075.

    Article  CAS  Google Scholar 

  11. Kirumakki, S.R., Shpeizer, B.G., Sagar, G.V., Chary, K.V.R., and Clearfield, A., J. Catal., 2006, vol. 242, p. 319.

    Article  CAS  Google Scholar 

  12. Xu, S., Yan, X., and Wang, X., Fuel, 2006, vol. 85, p. 2243.

    Article  CAS  Google Scholar 

  13. Srinivas, D., Satyanarayana, C.V.V., Potdar, H.S., and Ratnasamy, P., Appl. Catal. A: Gen., 2003, vol. 246, p. 323.

    Article  CAS  Google Scholar 

  14. Fedorov, A.V., Kukushkin, R.G., Yeletsky, P.M., Bulavchenko, O.A., and Yakovlev, V.A., J. Alloys Compd., 2020, vol. 844, p. 156135.

    Article  CAS  Google Scholar 

  15. Ivanova, Y.A., Sutormina, E.F., Isupova, L.A., and Rogov, V.A., Kinet. Catal., 2018, vol. 59, no. 3, p. 537.

    Article  Google Scholar 

  16. Xu, S., Yan, X., and Wang, X., Fuel, 2006, vol. 85, p. 2243.

    Article  CAS  Google Scholar 

  17. Takeguchi, T., Furukawa, S.-N., and Inoue, M., J. Catal., 2001, vol. 202, p. 14.

    Article  CAS  Google Scholar 

  18. Matus, E.V., Shlyakhtina, A.S., Sukhova, O.B., Ismagilov, I.Z., Ushakov, V.A., Yashnik, S.A., Kerzhentsev, M.A., Ismagilov, Z.R., Nikitin, A.P., and Bharali, P., Kinet. Catal., 2019, vol. 60, p. 221.

    Article  CAS  Google Scholar 

  19. Cárdenas-Arenas, A., Bailón-García, E., Lozano-Castelló, D., Da Costa, P., and Bueno-Lopez, A., J. Rare Earths, 2022, vol. 40, no. 1, p. 57.

    Article  Google Scholar 

  20. Aberkane, A., Yeste, M.P., Djazi, F., and Cauqui, M.A., Nanomater, 2022, vol. 12, no. 15, p. 2627.

    Article  Google Scholar 

  21. Parmaliana, A., Arena, F., Frusteri, F., and Giordano, N., J. Chem. Soc., Faraday Trans., 1990, vol. 86, p. 2663.

    Article  CAS  Google Scholar 

  22. Bulavchenko, O.A., Afonasenko, T.N., Sigaeva, S.S., Ivanchikova, A.V., Saraev, A.A., Gerasimov, E.Y., Kaichev, V.V., and Tsybulya, S.V., Top. Catal., 2020, vol. 63, p. 75.

    Article  CAS  Google Scholar 

  23. Arnoldy, P., De Booys, J.L., Scheffer, B., and Moulijn, J.A., J. Catal., 1985, vol. 96, p. 122.

    Article  CAS  Google Scholar 

  24. Garces, L.J., Hincapie, B., Zerger, R., and Suib, S.L., J. Phys. Chem. C, 2015, vol. 119, p. 5484.

    Article  CAS  Google Scholar 

  25. Bulavchenko, O.A., Cherepanova, S.V., Malakhov, V.V., Dovlitova, L.S., Ishchenko, A.V., and Tsybulya, S.V., Kinet. Catal., 2009, vol. 50, p. 192.

    Article  CAS  Google Scholar 

  26. Bulavchenko, O.A., Venediktova, O.S., Afonasenko, T.N., Tsyrul’nikov, P.G., Saraev, A.A., Kaichev, V.V., and Tsybulya, S.V., RSC Adv., 2018, vol. 8, p. 11598.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Stobbe, E.R., de Boer, B.A., and Geus, J.W., Catal. Today, 1999, vol. 47, p. 161.

    Article  CAS  Google Scholar 

  28. Fornasiero, P., Balducci, G., Di Monte, R., Kaspar, J., Sergo, V., Gubitosa, G., Ferrero, A., and Graziani, M., J. Catal., 1996, vol. 164, p. 173.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The X-ray diffraction studies were performed using the equipment of the Center for Collective Use “National Center for the Study of Catalysts.” The equipment of the Shared Research Center “Siberian Synchrotron and Terahertz Radiation Center” on the basis of the VEPP-4–VEPP-2000 Electron–Positron Collider Complex at the Budker Institute of Nuclear Physics, Siberian Branch, Russian Academy of Sciences was used in this work. The authors are grateful to Z.S. Vinokurov for performing in situ XRD analysis.

Funding

This work was carried out within the framework of a state contract of the Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of Sciences (project no. AAAA-A21-121011390011-4).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. D. Mikhnenko or O. A. Bulavchenko.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Makhlyarchuk

Abbreviations and notation: XRD, X-ray diffraction; TPR-H2, temperature-programmed reduction with hydrogen; CSR, coherent scattering region; a, lattice parameter; Ssp, specific surface area.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mikhnenko, M.D., Afonasenko, T.N., Rogov, V.A. et al. Activation of Nickel Oxide Catalysts Modified with Cobalt, Cerium, Manganese, and Zirconium. Kinet Catal 64, 484–493 (2023). https://doi.org/10.1134/S0023158423040079

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0023158423040079

Keywords:

Navigation