Skip to main content
Log in

Effect of Catalyst Composition and Process Conditions on the Catalytic Efficiency of Cobalt Ferrite in the Decomposition of Nitrogen(I) Oxide

  • CHEMICAL KINETICS AND CATALYSIS
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

A study is performed of the procedure for preparing a catalyst of the decomposition of nitrogen(I) oxide. Decomposition catalysts were prepared through the mechanochemical synthesis of cobalt ferrite from a mixture of iron and cobalt oxalates. It is established that preliminary mechanochemical activation of the initial components in a roller ring vibration mill allows the temperature of cobalt ferrite synthesis to be reduced to 300°C, yielding a product with a more developed specific surface area and porous structure. The catalytic properties of cobalt ferrite with different ratios of the main components (CoO : Fe2O3 = 0.7–1.3) are studied in the temperature range of 100–500°C. It is shown that raising the content of CoO in the composition of cobalt ferrite to a ratio of 1.3 lowers the temperature of the 50% decomposition of N2O from 420 to 370°C. The effect water vapor, O2, and H2 have on the reaction is revealed. The effect pressure and temperature have on the activity of a catalyst based on cobalt ferrite is established for the decomposition of N2O.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. A. P. Bogachev, A. M. Slobodchikov, and V. V. Khomyak, Uch. Zam. TOGU 8 (1), 92 (2017).

    Google Scholar 

  2. V. A. Zakirov, Khim. Zhizn’, No. 4, 18 (2012).

  3. L. A. Isupova and Yu. A. Ivanova, Kinet. Catal. 60, 744 (2019). https://doi.org/10.1134/S0453881119060054

    Article  CAS  Google Scholar 

  4. A. P. Il’in and A. V. Kunin, Nitric Acid Production (Lan’, St. Petersburg, 2013) [in Russian].

  5. K. O. Denisova, A. A. Il’in, R. N. Rumyantsev, et al., Ros. Khim. Zh. 61 (2), 46 (2017).

    Google Scholar 

  6. N. Richards, E. Nowicka, H. C. James, et al., Top. Catal. 61, 1983 (2018). https://doi.org/10.1007/s11244-018-1024-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. S. Sklenak, P. C. Andrikopoulos, and B. Boekfa, J. Catal. 272, 262 (2010). https://doi.org/10.1016/j.jcat.2010.04.008

    Article  CAS  Google Scholar 

  8. I. M. Kolesnikov, Catalysis in the Gas and Oil Industry (Moscow, 2012) [in Russian].

    Google Scholar 

  9. M. I. Temkin, N. M. Morozov, L. O. Apel’baum, et al., Probl. Fiz. Khim., No. 2, 14 (1959).

  10. I. M. Morozov, M. I. Luk’yanova, and M. I. Temkin, Kinet. Katal., No. 1, 172 (1966).

  11. G. Maniak and P. Stelmachowski, Catal. Commun., No. 15, 127 (2011). https://doi.org/10.1016/j.catcom.2011.08.027

  12. R. I. Kuz’mina and V. P. Sevost’yanov, Ros. Khim. Zh. (Zh. Ob-va Mendeleeva) 44 (1), 71 (2000).

  13. K. O. Denisova, A. A. Il’in, R. N. Rumyantsev, A. P. Il’in, and N. N. Smirnov, Theor. Found. Chem. Eng. 54, 1306 (2020). https://doi.org/10.1134/S0040579520050309

    Article  CAS  Google Scholar 

  14. K. O. Denisova, A. A. Ilyin, R. N. Rumyantsev, and A. P. Ilyin, Russ. J. Gen. Chem. 90, 1036 (2020). https://doi.org/10.1134/S107036322006016X

    Article  CAS  Google Scholar 

  15. G. D. Pirngruber, L. Frunz, and J. A. Z. Pieterse, J. Catal. 243, 340 (2006). https://doi.org/10.1016/j.jcat.2006.08.006

    Article  CAS  Google Scholar 

  16. L. Obalova, G. Maniak, K. Karásková, et al., Catal. Commun. 12, 1055 (2012). https://doi.org/10.1016/j.catcom.2011.03.017

    Article  CAS  Google Scholar 

  17. N. Russo, D. Fino, G. Saracco, et al., Catal. Today 46, 4226 (2007). https://doi.org/10.1021/ie0612008

    Article  CAS  Google Scholar 

  18. M. Lykaki and E. Papista, Catalysts, No. 9, 233 (2019). https://doi.org/10.3390/catal9030233

  19. A. A. Il’in, R. N. Rumyantsev, I. A. Dubova, et al., Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol. 55 (10), 75 (2012).

    Google Scholar 

  20. Yu. A. Ivanova, E. F. Sutormina, and L. A. Isupova, Kinet. Catal. 61, 646 (2020). https://doi.org/10.1134/S0023158420040072

    Article  CAS  Google Scholar 

  21. S. Javoy, R. Mevel, and C. E. Paillard, J. Chem. Kinet. 5, 357 (2009). https://doi.org/10.1002/kin.20401

    Article  CAS  Google Scholar 

  22. S. A. Agaev, G. A. Gasan-zade, and M. Yu. Sultanov, Azerb. Khim. Zh., No. 1, 19 (1978).

  23. T. P. Gaidei, in Physicochemical Aspects of Limiting States and Structural Transformations in Continuous Media, Materials, and Technical Systems, Ed. by Yu. V. Petrov (Politekhnika, St. Petersburg, 2018), p. 34 [in Russian]. https://doi.org/10.25960/7325-1134-5.34

    Book  Google Scholar 

  24. C. M. Cho, N. Nunotani, and N. Imanaka, J. Asian Ceram. Soc. 7, 518 (2019). https://doi.org/10.1080/21870764.2019.1675941

    Article  Google Scholar 

  25. G. Grzybek, P. Stelmachowski, and J. J. Stanek, Catal. Commun. 1, 127 (2011). https://doi.org/10.1016/j.catcom.2011.08.027

    Article  CAS  Google Scholar 

Download references

Funding

The practical part of this work was performed under conditions of the 2012–2022 “Program for the Processing of Hydrocarbon Raw Materials” at the RF Ministry of Education and Science’s Laboratory for the Synthesis, Research, and Testing of Catalytic and Adsorption Systems, topic no. FZZW-2020-0010. It was supported by the President of the Russian Federation, stipend no. 15493GU/2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Il’in.

Additional information

Translated by O. Kadkin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Denisova, K.O., Il’in, A.A., Il’in, A.P. et al. Effect of Catalyst Composition and Process Conditions on the Catalytic Efficiency of Cobalt Ferrite in the Decomposition of Nitrogen(I) Oxide. Russ. J. Phys. Chem. 95, 2014–2019 (2021). https://doi.org/10.1134/S0036024421100058

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024421100058

Keywords:

Navigation