Skip to main content
Log in

The post-depositional reactivity of iron and managanese in the sediments of a macrotidal estuarine system

  • Published:
Estuaries Aims and scope Submit manuscript

Abstract

Four cores of anoxic sediments were collected from the Seine estuary to assess the early diagenesis pathways leading to the formation of previously reactive phase. Pore waters were analyzed for dissolved iron (Fe) and manganese (Mn) and different ligands (e.g., sulfate, chloride, total inorganic carbon). The anoxic zone is present up to the first centimeter depth, in these conditions the reduction of Mn and Fe oxides and SO4 2− was verified. The sulfate reduction was well established with a subsequent carbon mineralization in the NORMAI94 core. The chemical speciation of Mn and Fe in the dissolved and solid phases was determined. For the dissolved phase, thermodynamic calculations were used to characterize and illustrate the importance of carbonate and phosphate phases as sinks for Fe and Mn. The ion activity product (IAP) of Fe and Mn species was compared to the solubility products (Ks) of these species. In the solid phase, the presence of higher concentration of calcium carbonate in the Seine sediments is an important factor controlling Mn cycle. The carbonate-bound Mn can reach more than 75% of the total concentration. This result is confirmed by the use of electron spin resonance (ESR) spectroscopy. The reduction of Fe is closely coupled to the sulfate reduction by the formation of new solid phases such as FeS and FeS2, which can be regarded as temporal sinks for sulfides. These forms were quantified in all cores as acid volatile sulfide (AVS: FeS+ free sulfide) and chromium reducible sulfide (CRS: FeS2+elemental sulfur S0).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Aller, R. C. 1980. Diagenetic processes near the sediment-water interface of Long Island Sound. II: Fe and Mn.Advances in Geophysics 22:351–415.

    CAS  Google Scholar 

  • Aller, R. C. 1994. The sedimentary Mn cycle in Long Island sound: Its role as intermediate oxidant and the influence of bioturbation, O2, and Corg flux on diagenetic reaction balance.Journal of Marine Science 52:252–295.

    Google Scholar 

  • Aller, R. C. andP. D. Rude. 1988. Complete oxidation of solid phase sulfides by manganese and bacteria in anoxic marine sediments.Geochimica et Cosmochimica Acta 52:751–765.

    Article  CAS  Google Scholar 

  • Anderson, L. G., P. O. J. Hall, A. Iverfeldt, M. M. Rutgers van der Loeff, B. Sundby, andS. F. G. Westerlund. 1986. Benthic respiration measured by total carbonate production.Limnology and Oceanography 31:319–329.

    CAS  Google Scholar 

  • Avoine, J. 1981. L’estuaire de la Seine: Sédiments et dynamique sédimentaire. Thèse Universite de Caen, France.

  • Avoine, J. 1986. Sediment exchanges, between the Seine estuary and its adjacent shelf.Journal of the Geological Society 144:135–148.

    Article  Google Scholar 

  • Bakker, J. E. andW. Helder. 1993. Skagerrak (northeastern North Sea) oxygen microprofiles and porewater chemistry in sediments.Marine Geology 111:299–321.

    Article  CAS  Google Scholar 

  • Berner, R. A. 1964. Stability field of, iron minerals in anaerobic marine sediments.Journal of Geology 72:826–834.

    Article  CAS  Google Scholar 

  • Berner, R. A. 1971. Principles of Chemical Sedimentology., McGraw Hill, New York.

    Google Scholar 

  • Berner, R. A. 1978. Sulfate reduction and the rate of deposition of marine sediments.Earth and Planetary Science Letters 37:492–498.

    Article  Google Scholar 

  • Berner, R. A. 1980. Early Diagenesis, A Theoretical Approach. Princeton Series in Geochemistry. Heinrich, Holland.

  • Berner, R. A. andJ. T. Westrich. 1985. Bioturbation and the early diagenesis of carbon and sulfur.American Journal of Science 285:193–206.

    CAS  Google Scholar 

  • Boudreau, B. P. andD. E. Canfield. 1993. A comparison of closed an open system models for pore water pH and calcitesaturation state.Geochimica et Cosmochimica Acta 57:317–334.

    Article  CAS  Google Scholar 

  • Boughriet, A., B. Ouddane, andM. Wartel. 1992. Electron spin resonance of Mn compounds and free radicals in particles from the Seine River and its estuary.Marine Chemistry 37: 149–169.

    Article  CAS  Google Scholar 

  • Boust, D. 1996. Etude de la pénétration des particules marines dans l’estuaire de la Seine par l’analyse des radionucléides naturels et artificiels. Programme Scientifique Seine Aval; Thème Dynamique des Contaminants. Rapport SERIE 97/008 (P). Rouen, France.

  • Boust, D., J. C. Fischer, B. Ouddane, F. Pett, andM. Wartel. 1999. Le fer et le manganèse dans l’estuarie de la Seine: Réactivités et recyclages. Les fascicules de Seine Aval. Ed. IFREMER, Brest, France.

    Google Scholar 

  • Bricker, O. P. andB. N. Troup. 1975. Sediment-water exchange in Chesapeake Bay, p. 3–27.In L. E. Cronin (ed.), Estuarine Research, Vol. 1 Academic Press, New York.

    Google Scholar 

  • Burdige, D. J. 1993. The biogeochemistry of managanese and iron reduction in marine sediments.Earth Science Reviews 35: 249–289.

    Article  CAS  Google Scholar 

  • Byrne, R. H., L. R. Kump, andK. J. Cantrell. 1988. The influence of temperature and pH on trace metal speciation in seawater.Marine Chemistry 25:163–181.

    Article  CAS  Google Scholar 

  • Canfield, D. E. 1994. Factors influencing organic carbon preservation in marine sediments.Chemical Geology 114:315–329.

    Article  CAS  Google Scholar 

  • Canfield, D. E., R. Raiswell, andS. Bottreel. 1992. The reactivity of sedimentary iron minerals towards sulfide.American Journal of Science 292:659–683.

    CAS  Google Scholar 

  • Canfield, D. E., B. Thamdrup, andJ. W. Hansen. 1993. The anaerobic degradation of organic matter in Danish coastal sediments: Iron reduction, manganese reduction and sulfate reduction.Geochimica et Cosmochimica Acta 57:3867–3883.

    Article  CAS  Google Scholar 

  • Cornwell, J. C. andJ. W. Morse. 1987. The characterization of iron sulfide minerals in anoxic marine sediments.Marine Chemistry 22:193–206.

    Article  CAS  Google Scholar 

  • De Lange, G. J. 1986. Early diagenetic reactions in interbedded pelagic and turbiditic sediments in the Nares Abyssal Plain (Western North Atlantic): Consequences for the composition of sediment and interstitial water.Geochimica et Cosmochimica Acta 50:2543–2561.

    Article  Google Scholar 

  • Dimmock, P. W., P. Warwick, andR. A. Robbins. 1995. Approaches to predicting stability constants.Analyst, 120:2159–2170.

    Article  CAS  Google Scholar 

  • Dos Santos, A. M. andW. Stumm. 1992. The reductive distribution of iron (III)(hydr)oxides by hydrogen sulfide.Langmuir 8:1671–1676.

    Article  Google Scholar 

  • Dupont, J. P., R. Lafite, M. F. Huault, P. Hommeril, andR. Meyer. 1996. Continental/marine ration changes in suspended and settled matter across a macrotidal estuary (the Seine estuary, northwestern France).Marine Geology 120:27–40.

    Article  Google Scholar 

  • El Ghobary, H. 1983. Diagénèse précoce en milieu littoral et mobilité des éléments métalliques. Thèse de Doctorat d’Etat, Université de Bordeaux, France.

    Google Scholar 

  • Elderfield H., R. J. McCaffrey, N. Luedtke, M. Bender, andV. W. Truesdale. 1981. Chemical diagenesis in Narrangansett Bay sediments.American Journal Science 281:1021–1055.

    CAS  Google Scholar 

  • Emerson, S. 1976. Early diagenesis in anaerobic lake sediments: Chemical equilibria in interstitial waters.Geochimica et Cosmochimica Acta 40:925–934.

    Article  CAS  Google Scholar 

  • Emerson, S., R. Jahnke, M. Bender, P. Froelich, G. Klinkhammer, C. Bowser, andG. Setlock. 1980. Early diagenesis in sediments from the eastern equatorial pacific. 1 Pore water nutrient and carbonates results.Earth and Planetary Science Letters 44:57–80.

    Article  Google Scholar 

  • Emerson, S. andG. Widmer. 1978. Early diagenesis in anaerobic lake sediment II. Thermodynamic and kinetic factors controlling the formation of iron phosphate.Geochimica et Cosmochimica Acta 42:1307–1316.

    Article  CAS  Google Scholar 

  • Enüstün, B. V. andJ. Turkevich. 1960. Solubility of fine particles of strontium sulfate.American Chemical Society Journal 82:4502–4509.

    Article  Google Scholar 

  • Franklin, M. L. andJ. W. Morse. 1983. The interaction of manganese (II) with the surface of calcite in dilute solutions and seawater.Marine Chemistry 12:241–254.

    Article  CAS  Google Scholar 

  • Froelich, P. N., G. P. Klinkhammer, M. L. Bender, N. A. Luedke, G. R. Heath, D. Gullen, P. Dauphin, D. Hammond, B. Hartman, andV. Maynard. 1979. Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: Suboxic diagenesis.Geochimica et Cosmochimica Acta 43:1075–1090.

    Article  CAS  Google Scholar 

  • Garrels, R. M., M. E. Thompson, andR. Siever. 1960. Stability of some carbonates at 25°C and one atmosphere total pressure.American Journal of Science 258:402–418.

    CAS  Google Scholar 

  • Gieskes, J. M. 1981. Deep-sea drilling interstitial water studies: Implications for chemical alteration of the oceanic crust, layers I and II. SPEM Spec. Publ. 32:149–167. Tulsa, Oklahoma.

    CAS  Google Scholar 

  • Gonzalez, J. L. 1992. Comportement du cadmium et du mercure lors de la diagenèse précoce et flux à l’interface eausédiment en zone littorale. Thèse de Doctorat de ɛème cycle, Université de Bordeaux 1, France.

    Google Scholar 

  • Heijs, S. K., H. M. Jonkers, H. van Gemerden, B. E. M. Schaub, andL. J. Stal. 1999. The buffering capacity towards free sulfide in sediments of a coastal lagoon (Bassin d’Arcachon, France)—The relative importance of chemical and biological processes.Estuarine, Coastal and Shelf Science 49:21–35.

    Article  CAS  Google Scholar 

  • Holdren, Jr.,G. R., O. P. Bricker III, andG. Matissof. 1975. A model for the control of dissolved manganese in the interstitial water of the Chesapeake Bay, p. 18:364–381.In T. M. Church (ed.), Marine Chemistry in the Coastal Environment. ACS Symposium Series. American Chemical Society, Washington, D.C.

    Google Scholar 

  • Hong, J., W. Calmano, andU. Förstner. 1995. Trace Elements in Natural Waters, Brit Salbu and Eiliv Steinnes (eds.), CRC Press, Boca Raton, Florida.

    Google Scholar 

  • Howarth, R. W. 1984. The ecological significance of sulfur in the energy dynamics of salt marsh and coastal marine sediments.Biogeochemistry 1:5–27.

    Article  CAS  Google Scholar 

  • Huerta-Diaz, M. A. andJ. W. Morse. 1992. Pyritisation of anoxic marine sediments.Geochimica Cosmochimica Acta 56:2681–2702.

    Article  CAS  Google Scholar 

  • Huerta-Diaz, M. A., A. Tessier, andR. Carignan. 1998. Geochemistry of trace metals associated with reduced sulfur in freshwater sediments.Applied Geochemistry 13:213–233.

    Article  CAS  Google Scholar 

  • Hulth, S., T. H. Blackburn, andP. O. J. Hall. 1994. Artic sediments (Svalbard): Cosumption and microdistribution of oxygen.Marine Chemistry 46:293–316.

    Article  CAS  Google Scholar 

  • Hurtgen, M. T., T. W. Lyons, E. D. Ingall, andA. M. Cruse. 1999. Anomalous enrichments of iron monosulfide in euxinic marine sediments and the role of H2S in iron sulfide transfor mations; examples from Effingham Inlet, Oraca Basin, and the Black Sea.American Journal of Science 299:7–9.

    Article  Google Scholar 

  • Jacobs, L. andS. Emerson. 1982. Trace metla solubility in anoxic fjord.Earth and Planetary Science Letters 60:237–252.

    Article  CAS  Google Scholar 

  • Johnson, K. S. 1982. Solubility of rhodochrosite (MnCO3) in water and seawater.Geochimica et Cosmochimica Acta 46:1805–1809.

    Article  CAS  Google Scholar 

  • Kestern, M. andU. Förstner. 1990. Speciation of trace elements in sediments, p. 245–318.In G. E. Batley (ed.), Trace Element Speciation: Analytical Methods and Problems. CRC Press, Boca Raton, Florida.

    Google Scholar 

  • King, G. M. 1990. Effects of added managanic and ferric oxides on sulfate reduction and sulfide oxidation in intertidal sediments.FEMS Microbiological Ecology 59:39–54.

    Google Scholar 

  • Klinkhammer, G. P. 1980. Early diagenesis in sediments from the eastern equatorial pacific. II. Pore water metal results.Earth and Planetary Science Letters 49:265–270.

    Article  Google Scholar 

  • Lapp, B. andW. Balzer. 1993. Early diagenesis of trace metals used as indicator of past productivity changes in coastal sediments.Geochimica et Cosmochimica Acta 57:4639–4652.

    Article  CAS  Google Scholar 

  • Li, Y. H., J. Bischoff, andG. Mathieu. 1969. The migration of manganese in the Arctic basin sediment.Earth and Planetary Science Letters 7:265–270.

    Article  CAS  Google Scholar 

  • Marin, P. 1988. Le fer et le manganèse dans le système estuaire de la Seine—Baie de Seine. Thèse de doctorat de ɛème cycle, Université de Caen, France.

    Google Scholar 

  • Martin, J. M., P. Nirel, andA. J. Thomas. 1987. Sequential extraction techniques: Promises and Problems.Marine Chemistry 22:313–341.

    Article  CAS  Google Scholar 

  • Middelburg, J. J., G. J. De Lange, andC. H. Van der Weijden. 1987. Manganese solubility control in marine pore waters.Geochimica et Cosmochimica Acta 51:759–763.

    Article  CAS  Google Scholar 

  • Morel, F. M. M. 1983. Principles of, Aquatic Chemistry. Wiley-Interscience Publication. John Wiley and Sons, New York.

    Google Scholar 

  • Morford, L. andS. Emerson. 1999. The geochemistry of redox trace metals in sediments.Geochimica et Cosmochimica Acta 63: 1735–1750.

    Article  CAS  Google Scholar 

  • Morgan, J. J. 1967. Chemical equilibria and kinetic properties of manganese in natural waters, p. 561–622.In S. D. Faust and J. V. Hunter (eds.), Principles and Application of Water Chemistry. John Wiley, New York.

    Google Scholar 

  • Murray, J. W., V. Grundmanis, andW. M. Smethie, Jr. 1978. Interstitial water chemistry in sediments of Saanich Inlet.Geochimica et Cosmochimica Acta 42:1011–1026.

    Article  CAS  Google Scholar 

  • Nembrini, G. P., J. A. Capobianco, M. Viel, andA. F. Williams. 1983. A Mössbauer and chemical study of the formation of vivianite in sediments of Lago Maggiore (Italy).Geochimica et Cosmochimica Acta 47:1459–1464.

    Article  CAS  Google Scholar 

  • Nirel, P. andF. M. M. Morel. 1990. Pittfalls of sequential extractions.Water Research 24:1055–1058.

    Article  CAS  Google Scholar 

  • Nriagu, J. O. 1972. Stability of vivianite and ion pair formation in the system Fe2(PO)4-H3PO4-H2O.Geochimica et Cosmochimica Acta 36:459–470.

    Article  CAS  Google Scholar 

  • Oenema, O. 1990. Pyrite accumulation in salt marshes in the Eastern Scheldt, southwest Netherlands.Biogeochemistry 9:75–98.

    Article  Google Scholar 

  • Ouddane, B., E. Martin, A. Boughriet, J. C. Fischer, andM. Wartel. 1997. Speciation of dissolved and particulate manganese in the seine River estuary.Marine Chemistry 58:189–201.

    Article  CAS  Google Scholar 

  • Ouddane, B., M. Skiker, J. C. Fischer, andM. Wartel. 1999. Distribution of iron and manganese in the Seine estuary: Approach with experimental laboratory mixing.Journal of Environmental Monitoring 1:489–496.

    Article  CAS  Google Scholar 

  • Pedersen, T. F. andN. B. Price. 1982. The geochemistry of manganese carbonate in Panama Basin sediments.Geochimica et Cosmochimica Acta 46:49.

    Article  Google Scholar 

  • Pingitore, Jr.,N. E., M. P. Eastman, M. Sandidge, K. Oden, andB. Feiha. 1988. The coprecipitation of manganese(II) with calcite: An experimental study.Marine Chemistry 25:107–120.

    Article  CAS  Google Scholar 

  • Postma, D. 1981. Formation of siderite and vivianite and the pore water composition of a recent bog sediment in Denmark.Chemical Geology 31:225–244.

    Article  CAS  Google Scholar 

  • Postma, D. 1981. Pyrite and siderite formation in brackish and freshwater swamp sediments.American Journal of Science 282: 1151–1183.

    Google Scholar 

  • Pyzik, A. J. andS. E. Sommer. 1981. Sedimentary iron monosulfides: Kinetics and mechanism of formation.Geochimica et Cosmochimica Acta 45:687–698.

    Article  CAS  Google Scholar 

  • Rajendran, A., M. D. Kumar, andJ. F. Bakker. 1992. Control of manganese and iron in Skagerrak (Northeastern North sea).Chemical Geology 98:111–129.

    Article  CAS  Google Scholar 

  • Robbins, J. A. andE. Callender. 1975. Diagenesis of manganese in Lake Michigan sediments.American Journal of Science 275:512–533.

    CAS  Google Scholar 

  • Sawlan, J. J. andJ. W. Murray. 1983. Trace metal remobilization in the interstitial waters of red clay and hemipelagic marine sediments.Earth and Planetary Science Letters 64:213–230.

    Article  CAS  Google Scholar 

  • Schercher, W. D. andD. C. McAvoy. 1992. MINEQL+−A software environment for chemical equilibrium modeling.Computers, Environment and Urban Systems 16:65–76.

    Article  Google Scholar 

  • Shaw, T. J., E. R. Sholkovitz, andG. Klinkhammer. 1994. Redox dynamics in the Chesapeake Bay: The effect on sediment/water uranium exchange.Geochimica et Cosmochimica Acta 58:2985–2995.

    Article  CAS  Google Scholar 

  • Singer, P. C. andW. Stumm. 1970. Solubility of ferrous iron in carbonate bearing waters.Journal of American Water Works Association 62:198–202.

    CAS  Google Scholar 

  • Skiker, M. 1989. Comportement du manganèse dans les eaux marines du détroit du Pas de Calais. Thèse de Doctorat de Sème cycle, Université de Lille 1, France.

    Google Scholar 

  • Skowronek, F., J. Sageman, F. Stenzel, andH. D. Schulz. 1994. Evolution of heavy-metal profiles in Weser estuary sediments, Germany.Environmental Geology 24:223–232.

    Article  CAS  Google Scholar 

  • Song Y. andG. Muller. 1995. Biogeochemical cycling of nutrients and trace metals in anoxic freshwater sediments of the Neckar River, Germany.Marine Freshwater Research 46:237–243.

    CAS  Google Scholar 

  • Song, Y. andG. Muller. 1999. Sediment-Water Interactions in Anoxic Freshwater Sediments. Mobility of Heavy Metals and Nutrients. Lecture Notes in Earth Sciences 81. Springer-Verlag, Berlin.

    Google Scholar 

  • Stumm, W. andJ. J. Morgan. 1996. Aquatic Chemistry, 3rd edition, John Wiley, New York.

    Google Scholar 

  • Suess, E. 1979. Mineral phases formed in anoxic sediments by microbial decomposition of organic matter.Geochimica Cosmochimica Acta 43:339–352.

    Article  CAS  Google Scholar 

  • Sundby, B. 1994. Sediment-water exchange processes, Section 5, Chapter 3.In J. L. Hamelink, P. F. Landrum, H. L. Bergman, and W. H. Benson (eds.), Bioavailability: Physical, Chemical, and Biological Interactions. CRC Press, Inc., Florida.

    Google Scholar 

  • Sundby, B. andN. Silverberg. 1985. Manganese fluxes in the benthic boundary layer.Limnology and Oceanography 30:372–381.

    Article  CAS  Google Scholar 

  • Tessenow, U. 1974. Lösungs-, Diffusions-, und Sorptionsprozesse in der Oberschicht von Seesedimenten. IV.Archin fuer Hydrobiologie Supplementband 47:1–79.

    CAS  Google Scholar 

  • Tessier, A. andP. G. C. Campbell. 1991. Comment on “Pittfalls of sequential extractions” by Nirel P. M. V. and F. M. M. Morel.Water Research 25:115–117.

    Article  CAS  Google Scholar 

  • Tessier, A., P. G. C. Campbell, andM. Bisson. 1979. Sequential extraction procedure for the speciation of particulate trace metals.Analytical Chemistry 51:844–851.

    Article  CAS  Google Scholar 

  • Thamdrup, B., H. Fossing, andB. B. Jørgensen. 1994. Manganese, iron and sulfur cycling in a coastal marine sediment, Aarhus Bay, Denmark.Geochimica et Cosmochimica Acta 58: 5115–5129.

    Article  CAS  Google Scholar 

  • Thomas, C. A. andL. I. Bendell. 1999. The significance of diagenesis versus riverine input in contributing to the sediment geochemical matrix of iron and manganese in intertidal region.Estuarine, Coastal and Shelf Science 48:635–647.

    Article  CAS  Google Scholar 

  • Van Genderen, A. C. G. andC. H. Van der Weijden. 1984. Prediction of Gibbs energies of formation and stability constant of some secondary uranium minerals containing the uranyl group.Uranium 1:249–256.

    Google Scholar 

  • Warnken, K. W., G. A. Gill, L. L. Griffin, andP. H. Santschi. 2001. Sediment-water exchange of Mn, Fe, Ni and Zn in Galveston Bay, Texas.Marine Chemistry 73:215–231.

    Article  CAS  Google Scholar 

  • Wartel, M., M. Skiker, Y. Auger, andA. Boughriet. 1990. Interaction of manganese (II) with carbonates in seawater: Assessment of the solubility product of MnCO3 and Mn distribution coefficient between the liquid phase and CaCo3 particles.Marine Chemistry 29:99–117.

    Article  CAS  Google Scholar 

  • Wedepohl, K. H. 1971. Environmental influences on the chemical composition of shales and clays, p. 307–333.In L. H. Arhens, F. Press, S. K. Runcorn, and H. C. Vrey (eds.), Physics and Chemistry of the Earth. Academic Press, London.

    Google Scholar 

  • Wilson, T. R. S., H. Cussen, andA. C. Braithwaite. 1993. An improved electrode for pore water oxygen measurement in ocean sediments.The Science of the Total Environment 135:115–121.

    Article  CAS  Google Scholar 

  • Yu, T. R. andG. L. Li. 1993. Electrochemical Methods in Soil and Water Research. Pergamon Press, Oxford.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Ouddane.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ouddane, B., Boust, D., Martin, E. et al. The post-depositional reactivity of iron and managanese in the sediments of a macrotidal estuarine system. Estuaries 24, 1015–1028 (2001). https://doi.org/10.2307/1353014

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.2307/1353014

Keywords

Navigation