Skip to main content

Advertisement

Log in

The Speciation and Mobility of Mn and Fe in Estuarine Sediments

  • Published:
Aquatic Geochemistry Aims and scope Submit manuscript

Abstract

Dissolved and solid-phase speciation of Mn and Fe was measured in the porewaters of sediments recovered from three sites in the Greater St. Lawrence Estuary: the Saguenay Fjord, the Lower St. Lawrence Estuary (LSLE) and the Gulf of St. Lawrence (GSL). At all sites and most depths, metal organic ligand complexes (Mn(III)–L and Fe(III)–L) dominated the sedimentary porewater speciation, making up to 100% of the total dissolved Mn or Fe. We propose that these complexes play a previously underestimated role in maintaining oxidized soluble metal species in sedimentary systems and in stabilizing organic matter in the form of soluble metal–organic complexes. In the fjord porewaters, strong (log KCOND > 13.2) and weak (log KCOND < 13.2) Mn(III)–L complexes were detected, whereas only weak Mn(III)–L complexes were detected at the pelagic and hemipelagic sites of the GSL and LSLE, respectively. At the fjord site, Mn(III)–L complexes were kinetically stabilized against reduction by Fe(II), even when Fe(II) concentrations were as high as 57 μM. Only dissolved Mn(II) was released from the sediments to overlying waters, suggesting that Mn(III) may be preferentially oxidized by sedimentary microbes at or near the sediment–water interface. We calculated the dissolved Mn(II) fluxes from the sediments to the overlying waters to be 0.24 µmol cm−2 year−1 at the pelagic site (GSL), 11 µmol cm−2 year−1 at the hemipelagic site (LSLE) and 2.0 µmol cm−2 year−1 in the fjord. The higher benthic flux in the LSLE reflects the lower oxygen concentrations (dO2) of the bottom waters and sediments at this site, which favor the reductive dissolution of Mn oxides as well as the decrease in the oxidation rate of dissolved Mn(II) diffusing through the oxic layer of the sediment and its release to the overlying water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Annane S, St-Amand L, Starr M, Pelletier E, Ferreyra GA (2015) Contribution of transparent exopolymeric particles (TEP) to estuarine particulate organic carbon pool. Mar Ecol Prog Ser 529:17–34

    Article  Google Scholar 

  • Anschutz P, Sundby B, Lefrançois L, Luther GWI, Mucci A (2000) Interaction between metal oxides and the cycles of nitrogen and iodine in bioturbated marine sediments. Geochim Cosmochim Acta 64:2751–2763

    Article  Google Scholar 

  • Anschutz P, Dedieu K, Desmazes F, Chaillou G (2005) Speciation, oxidation state, and reactivity of particulate manganese in marine sediments. Chem Geol 218:265–279

    Article  Google Scholar 

  • Barbeau C, Bougie R, Côté J-E (1981) Variations spatiales et temporelles du cesium-137 et du carbone dans les sédiments du fjord du Saguenay. Can J Earth Sci 18:1004–1011

    Article  Google Scholar 

  • Beckler JS, Jones ME, Taillefert M (2015) The origin, composition, and reactivity of dissolved iron(III) complexes in coastal organic- and iron-rich sediments. Geochim Cosmochim Acta 152:72–88

    Article  Google Scholar 

  • Bélanger C (2003) Observation and modelling of a renewal event in the Saguenay Fjord. Ph.D. thesis, Université du Québec à Rimouski, Rimouski, QC

  • Belley R, Archambault P, Sundby B, Gilbert F, Gagnon J-M (2010) Effects of hypoxia on benthic macrofauna and bioturbation in the Estuary and Gulf of St. Lawrence, Canada. Cont Shelf Res 30:1302–1313

    Article  Google Scholar 

  • Belzile M, Galbraith PS, Bourgault D (2015) Water renewals in the Saguenay Fjord. J Geophys Res 121:638–657

    Article  Google Scholar 

  • Benoit P, Gratton Y, Mucci A (2006) Modeling of dissolved oxygen levels in the bottom waters of the Lower St. Lawrence Estuary: coupling of benthic and pelagic processes. Mar Chem 102:13–32

    Article  Google Scholar 

  • Boyle EA, Edmond JM, Sholkovitz ER (1977) The mechanism of iron removal in estuaries. Geochim Cosmochim Acta 41:1313–1324

    Article  Google Scholar 

  • Brendel PJ, Luther GW (1995) Development of a gold amalgam voltammetric microelectrode for the determination of dissolved Fe, Mn, O2, and S(-II) in porewaters of marine and freshwater sediments. Environ Sci Technol 29:751–761

    Article  Google Scholar 

  • Canfield DE, Jorgensen BB, Fossing H, Glud R, Gundersen J, Ramsing NB, Thamdrup B, Hansen JW, Nielsen LP, Hall POJ (1993) Pathways of organic carbon oxidation in three continental margin sediments. Mar Geol 11:27–40

    Article  Google Scholar 

  • Chaillou G, Schafer J, Anschutz P, Lavaux G, Blanc G (2003) The behaviour of arsenic in muddy sediments of the bay of Biscay (France). Geochim Cosmochim Acta 67:2993–3003

    Article  Google Scholar 

  • Chen Q, Mucci A, Sundby B, Minarik W (2012) Early diagenesis of redox-sensitive elements in the Estuary and Gulf of St. Lawrence. Contributed poster presentation, 22st V.M. Goldschmidt Conference, June 24–29, Montréal, Canada. Mineralogical Mag 76:1568

  • Chester R, Hughes MJ (1967) A chemical technique for the separation of ferro-manganese minerals, carbonate minerals and adsorbed trace elements from pelagic sediments. Chem Geol 2:249–262

    Article  Google Scholar 

  • Davies SHR, Morgan JJ (1989) Manganese(II) oxidation kinetics on metal oxide surfaces. J Colloid Interface Sci 129:63–77

    Article  Google Scholar 

  • Dellwig O, Schnetger B, Brumsack H, Grossart H, Umlauf L (2012) Dissolved reactive manganese at pelagic redoxclines (part II): hydrodynamic conditions for accumulation. J Mar Syst 90:31–41

    Article  Google Scholar 

  • Dickie L, Trites RW (1983) The Gulf of St. Lawrence. In: Dickie L, Trites RW (eds) Estuaries and semi-enclosed seas. Elsevier Scientific Publication, Amsterdam, pp 403–425

    Google Scholar 

  • Duckworth OW, Sposito G (2005) Siderophore-manganese(III) interactions I. Manganite dissolution promoted by desferrioxamine-B. Environ Sci Technol 39:6045–6051

    Article  Google Scholar 

  • Duckworth OW, Sposito G (2007) Siderophore-promoted dissolution of synthetic and biogenic layer type Mn oxides. Chem Geol 242:497–508

    Article  Google Scholar 

  • Edenborn HM, Mucci A, Belzile N, Lebel J, Silverberg N, Sundby B (1986) A glove box for the fine scale subsampling of sediment box cores. Sedimentology 33:147–150

    Article  Google Scholar 

  • El-Sahb MI, Silverberg N (1990) The St. Lawrence Estuary: introduction. In: El-Sabh MI, Silverberg N (eds) Oceanography of a large-scale estuarine system. Springer, New York, pp 1–9

    Google Scholar 

  • Ferdelman G (1988) The distribution of sulfur, iron, manganese, copper, and uranium in a salt marsh sediment core as determined by a sequential extraction method. M.Sc. thesis, University of Delaware

  • Fortin GR, Pelletier M (1995) Synthèse des connaissances sur les aspects physiques et chimiques de l’eau et des sédiments du Saguenay. Environnement Canada, région du Québec, Conservation de l’environnement, Centre Saint-Laurent, Technical report

  • Froelich PN, Klinkhammer GP, Bender ML, Luedtke NA, Heath GR, Cullen D, Dauphin P, Hammond D, Hartman B, Maynard V (1979) Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic, suboxic diagenesis. Geochim Cosmochim Acta 43:1075–1090

    Article  Google Scholar 

  • Gagnon C, Mucci A, Pelletier E (1995) Anomalous accumulation of acid-volatile sulphides in a coastal marine sediment (Saguenay Fjord, Canada). Geochim Cosmochim Acta 59:2663–2675

    Article  Google Scholar 

  • Gaillard J-F, Pauwels H, Michard G (1989) Chemical diagenesis in coastal marine sediments. Oceanol Acta 12:175–187

    Google Scholar 

  • Genovesi L, de Vernal A, Thibodeau B, Hillaire-Marcel C, Mucci A, Gilbert D (2011) Recent changes in bottom water oxygenation and temperature in the Gulf of St. Lawrence: micropaleontological and geochemical evidence. Limnol Oceanogr 56:1319–1329

    Article  Google Scholar 

  • Gilbert D, Gobeil C, Sundby B, Mucci A, Tremblay GH (2005) A seventy-two year record of diminishing deep-water oxygen levels in the St. Lawrence estuary: the northwest Atlantic connection. Limnol Oceanogr 50:1654–1666

    Article  Google Scholar 

  • Gratton Y, Mertz G, Gagné JA (1988) Satellite observations of tidal upwelling and mixing in the St. Lawrence Estuary. J Geophys Res 93(C6):6947–6954

    Article  Google Scholar 

  • Gratton Y, Lefaivre D, Couture M (1994) Océanographie physique du fjord du Saguenay. Le fjord du Saguenay: Un Milieu Exceptionnel de Recherche, J.-M. Sévigny and C. M. Couillard, Eds., Ministère des Pêches et des Océans, Institut Maurice-Lamontagne, pp 8–16

  • Hansard SP, Easter HD, Voelker BM (2011) Rapid reaction of nanomolar Mn(II) with superoxide radical in seawater and simulated freshwater. Environ Sci Technol 45:2811–2817

    Article  Google Scholar 

  • Hedges JI, Keil RG (1995) Sedimentary organic matter preservation: an assessment and speculative synthesis. Mar Chem 49:81–115

    Article  Google Scholar 

  • Hyacinthe C, Bonneville S, Van Cappellen P (2006) Reactive iron(III) in sediments: chemical versus microbial extractions. Geochim Cosmochim Acta 70:4166–4180

    Article  Google Scholar 

  • Katsev S, Chaillou G, Sundby B, Mucci A (2007) Effects of progressive oxygen depletion on sediment diagenesis and fluxes: a model for the lower St. Lawrence River Estuary. Limnol Oceanogr 52:2555–2568

    Article  Google Scholar 

  • Kostka J, Luther GW (1994) Partitioning and speciation of solid phase iron in salt-marsh sediments. Geochim Cosmochim Acta 58:1701–1710

    Article  Google Scholar 

  • Learman DR, Voelker BM, Vazquez-Rodrigues AI, Hansel CM (2011) Formation of manganese oxides by bacterially generated superoxide. Nat Geosci 4:95–98

    Article  Google Scholar 

  • Lefort S (2012) Multidisciplinary study of hypoxia in the deep water of the Estuary and Gulf of St. Lawrence: is this ecosystem on borrowed time? Ph.D. thesis, McGill University

  • Lefort S, Mucci A, Sundby B (2012) Sediment response to 25 years of persistent hypoxia. Aquat Geochem 18:461–474

    Article  Google Scholar 

  • Leventhal J, Taylor C (1990) Comparison of methods to determine degree of pyritization. Geochim Cosmochim Acta 54:2621–2625

    Article  Google Scholar 

  • Lin H, Szeinbaum NH, DiChristina TJ, Taillefert M (2012) Microbial Mn(IV) reduction requires an initial one-electron reductive solubilization step. Geochim Cosmochim Acta 99:179–192

    Article  Google Scholar 

  • Locat J, Levesque C (2009) Le Fjord du Saguenay: Une physiographie et un registre exceptionnel. Rev Sci Eau 22:135–157

    Google Scholar 

  • Luther GW (2010) The role of one- and two-electron transfer reactions in forming thermodynamically unstable intermediates as barriers in multi-electron redox reactions. Aquat Geochem 16:395–420

    Article  Google Scholar 

  • Luther GW, Kostka JE, Church TM, Sulzberger B, Stumm W (1992) Seasonal iron cycling in the salt-marsh sedimentary environment: the importance of ligand complexes with Fe(II) and Fe(III) in the dissolution of Fe(III) minerals and pyrite, respectively. Mar Chem 40:81–103

    Article  Google Scholar 

  • Luther GWI, Shellenbarger PA, Brendel PJ (1996) Dissolved organic Fe(III) and Fe(II) complexes in salt marsh porewaters. Geochim Cosmochim Acta 60:951–960

    Article  Google Scholar 

  • Luther GW, Sundby B, Lewis BL, Brendel PJ, Silverberg N (1997) Interactions of manganese with the nitrogen cycle: alternative pathways to dinitrogen. Geochim Cosmochim Acta 61:4043–4052

    Article  Google Scholar 

  • Luther GW, Glazer BT, Ma S, Trouwborst RE, Moore TS, Metzger E, Kraiya C, Waite TJ, Druschel G, Sundby B, Taillefert M, Nuzzio DB, Shank TM, Lewis BL, Brendel PJ (2008) Use of voltammetric solid-state (micro)electrodes for studying biogeochemical processes: laboratory measurements to real time measurements with an in situ electrochemical analyzer (ISEA). Mar Chem 108:221–235

    Article  Google Scholar 

  • Luther GW III, Madison AS, Mucci A, Sundby B, Oldham VE (2015) A kinetic approach to assess the strengths of ligands bound to soluble Mn(III). Mar Chem 173:93–99

    Article  Google Scholar 

  • Luther GW, Thibault de Chanvalon A, Oldham VE, Estes EE, Tebo BM, Madison AS (2018) Reduction of manganese oxides: thermodynamic, kinetic and mechanistic considerations for one- versus two-electron transfer steps. Aquat Geochem 24:257–277. https://doi.org/10.1007/s10498-018-9342-1

    Article  Google Scholar 

  • Madison AS, Tebo BM, Luther GW (2011) Simultaneous determination of soluble manganese(III), manganese(II) and total manganese in natural (pore)waters. Talanta 84:374–381

    Article  Google Scholar 

  • Madison AS, Tebo BM, Mucci A, Sundby B, Luther GW III (2013) Abundant porewater Mn(III) is a major component of the sedimentary redox system. Science 341:875–878

    Article  Google Scholar 

  • Mucci A (2004) The behavior of mixed Ca–Mn carbonates in water and seawater: controls of manganese concentrations in marine porewaters. Aquat Geochem 10:139–169

    Article  Google Scholar 

  • Mucci A, Richard L-F, Lucotte M, Guignard C (2000) The differential geochemical behavior of arsenic and phosphorus in the water column and sediments of the Saguenay Fjord Estuary, Canada. Aquat Geochem 6:293–324

    Article  Google Scholar 

  • Mucci A, Boudreau B, Guignard C (2003) Diagenetic mobility of trace elements in sediments covered by a flash flood deposit: Mn, Fe and As. Appl Geochem 18:1011–1026

    Article  Google Scholar 

  • Oldham VE, Owings SM, Jones M, Tebo BM, Luther GW (2015) Evidence for the presence of strong Mn(III)-binding ligands in the water column of the Chesapeake Bay. Mar Chem 171:58–66

    Article  Google Scholar 

  • Oldham VE, Mucci A, Tebo BM, Luther GW (2017a) Soluble Mn(III)-L complexes are abundant in oxygenated waters and stabilized by humic ligands. Geochim Cosmochim Acta 199:238–246

    Article  Google Scholar 

  • Oldham VE, Miller MT, Jensen LT, Luther GW (2017b) Revisiting Mn and Fe removal in humic rich estuaries. Geochim Cosmochim Acta 209:267–283

    Article  Google Scholar 

  • Oldham VE, Tebo BM, Jones MR, Luther GW (2017c) Oxidative and reductive processes contributing to manganese cycling at oxic-anoxic interfaces. Mar Chem 195:122–128

    Article  Google Scholar 

  • Parker D, Sposito G, Tebo BM (2004) Manganese(III) binding to a pyoverdine siderophore produced by a manganese(II)-oxidizing bacterium. Geochim Cosmochim Acta 68:4809–4820

    Article  Google Scholar 

  • Parker DL, Morita T, Mozafarzadeh ML, Verity R, McCarthy JK, Tebo BM (2007) Inter-relationships of MnO2 precipitation, siderophore-Mn(III) complex formation, siderophore degradation, and iron limitation in Mn(II) oxidizing bacterial cultures. Geochim Cosmochim Acta 71:5672–5683

    Article  Google Scholar 

  • Raiswell R, Canfield DE, Berner RA (1994) A comparison of iron extraction methods for the determination of degree of pyritisation and the recognition of iron-limited pyrite formation. Chem Geol 111:101–110

    Article  Google Scholar 

  • Reeburgh WS (1967) An improved interstitial water sampler. Limnol Oceanogr 12:163–165

    Article  Google Scholar 

  • Schafer CT, Smith JN, Côté R (1990) The Saguenay Fjord: a major tributary to the St. Lawrence Estuary. In: El-Sabh MI, Silverberg N (eds) Oceanography of a large-scale estuarine system: The St. Lawrence, vol 39. Springer, New York, pp 378–420

    Chapter  Google Scholar 

  • Schulz HD (2000) Quantification of early diagenesis: dissolved constituents in marine porewaters. In: Shulz HD, Zabel M (eds) Marine geochemistry. Springer, Berlin

    Chapter  Google Scholar 

  • Silverberg N, Sundby B (1990) Sediment-water interaction and early diagenesis in the Laurentian Trough. In: El-Sabh MI, Silverberg N (eds) Oceanography of a large-scale estuarine system: The St. Lawrence, vol 39. Springer, New York, pp 202–238

    Chapter  Google Scholar 

  • Silverberg N, Bakker J, Edenborn HM, Sundby B (1987) Oxygen profiles and organic carbon fluxes in Laurentian Trough sediments. Neth J Sea Res 21:95–105

    Article  Google Scholar 

  • Smith JN, Schafer CT (1999) Sedimentation, bioturbation, and Hg uptake in the sediments of the estuary and Gulf of St. Lawrence. Limnol Oceanogr 44:207–219

    Article  Google Scholar 

  • Smith JN, Walton A (1980) Sediment accumulation rates and geochronologies measured in the Saguenay Fjord using the Pb-210 dating method. Geochim Cosmochim Acta 44:225–240

    Article  Google Scholar 

  • Stacey MW, Gratton Y (2001) The energetics and tidally induced reverse renewal in a two-silled fjord. J Phys Oceanogr 31:1599–1615

    Article  Google Scholar 

  • Stookey LL (1970) Ferrozine. A new spectrophotometric reagent for iron. Anal Chem 42:770–781

    Article  Google Scholar 

  • Stumm W, Morgan JJ (1996) Aquatic chemistry. Wiley-Interscience, New York, p 1022

    Google Scholar 

  • Sundby B (1977) Manganese-rich particulate matter in a coastal marine environment. Nature 270:417–419

    Article  Google Scholar 

  • Sundby B, Silverberg N, Chesselet R (1981) Pathways of manganese in an open estuarine system. Geochim Cosmochim Acta 45:293–307

    Article  Google Scholar 

  • Taillefert M, Bono AB, Luther GW (2000) Reactivity of freshly formed Fe(III) in synthetic solutions and (pore)waters: voltammetric evidence of an aging process. Environ Sci Technol 34:2169–2177

    Article  Google Scholar 

  • Taillefert M, Rozan TF, Glazer BT, Herszage J, Trouwborst RE, Luther WG III (2002) Seasonal variations of soluble organic-Fe(III) in sediment porewaters as revealed by voltammetric microelectrodes. In: Taillefert M, Rozan T (eds) Environmental electrochemistry: analyses of trace element biogeochemistry. American Chemical Society Symposium Series, Chapt 13, vol 811. American Chemical Society, Washington, DC, pp 247–264. https://doi.org/10.1021/bk-2002-0811.ch013

    Chapter  Google Scholar 

  • Tebo BM, Ghiorse WC, vanWaasbergen LG, Siering PI, Caspi R (1997) Review in mineralogy. Miner Soc Am 35:225–266

    Google Scholar 

  • Tebo BM, Johnson HA, McCarthy JK, Templeto AS (2005) Geomicrobiology of manganese(II) oxidation. Trends Microbiol 13:421–428

    Article  Google Scholar 

  • Thibodeau B, de Vernal A, Mucci A (2006) Recent eutrophication and consequent hypoxia in the bottom waters of the Lower St. Lawrence Estuary: micropaleontological and geochemical evidence. Mar Geol 231:37–50

    Article  Google Scholar 

  • Tremblay L, Gagné J-P (2007) Distribution and biogeochemistry of sedimentary humic substances in the St. Lawrence Estuary and the Saguenay Fjord, Québec. Org Geochem 38:682–699

    Article  Google Scholar 

  • Trouwborst RE, Clement B, Tebo BM, Glazer BT, Luther GW III (2006) Soluble Mn(III) in suboxic zones. Science 313:1955–1957

    Article  Google Scholar 

  • Van Cappellen P, Wang Y (1996) Cycling of iron and manganese in surface sediments: a general theory for the coupled transport and reaction of carbon, oxygen, nitrogen, sulfur, iron and manganese. Am J Sci 296:197–243

    Article  Google Scholar 

  • van den Berg CMG (1995) Evidence for organic complexation of iron in seawater. Mar Chem 50:139–157

    Article  Google Scholar 

  • Webb SM, Dick GJ, Bargar JR, Tebo BM (2005) Evidence for the presence of Mn(III) inermediates in the bacterial oxidation of Mn(II). Proc Natl Acad Sci USA 102:5558–5563

    Article  Google Scholar 

  • Yakushev EV, Pollehne F, Jost G, Kuznetsov I, Schneider B, Umlauf L (2007) Analysis of the water column oxic/anoxic interface in the Black and Baltic seas with a numerical model. Mar Chem 107:388–410

    Article  Google Scholar 

  • Yakushev E, Pakhomova S, Sørenson K, Skei J (2009) Importance of the different manganese species in the formation of water column redox zones: observations and modeling. Mar Chem 117:59–70

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by grants from the Chemical Oceanography program of the National Science Foundation (OCE-1558738 and OCE-1155385 to GWL; OCE-1558692 and OCE-1154307 to BMT) and the National Sciences and Engineering Research Council of Canada (NSERC) through Discovery and Ship-time grants to AM. Véronique Oldham thanks the University of Delaware for receipt of a Marian R. Okie Fellowship and a University of Delaware Graduate Fellowship. Thanks also to Gilles Desmeules as well as the captain and crew of the R/V Coriolis II who made sampling for this research possible. Finally, we thank the journal reviewers, including D. Burdige, and the Associate Editor, B. Deflandre for their incisive comments and recommendations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Véronique E. Oldham.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oldham, V.E., Siebecker, M.G., Jones, M.R. et al. The Speciation and Mobility of Mn and Fe in Estuarine Sediments. Aquat Geochem 25, 3–26 (2019). https://doi.org/10.1007/s10498-019-09351-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10498-019-09351-0

Keywords

Navigation