Skip to main content
Log in

A method for the measurement of bedload sediment transport and passive faunal transport on intertidal sandflats

  • Published:
Estuaries Aims and scope Submit manuscript

Abstract

A simple and inexpensive sampler to measure bedload sediment transport in shallow subtidal or intertidal areas is described. The cylindrical sub-sediment trap with an aspect ratio of 20 (height: diameter) is an improvement over conventional bedload samplers which are difficult to use in shallow areas or fail to collect the biological material associated with bedload. Traps deployed on a low-energy intertidal sandflat for six months provided daily estimates of bedload transport (quartz grains: 0.001–40 kg m−1 d−1), passive infaunal transport (e.g., the bivalveMya arenaria, max: 800 ind m−1 d−1), and organic detrital flux (e.g., macrophyte fragments, max: 400 g dry wt m−1 d−1). Bedload rates estimated with traps were compared to predictions from a numerical bedload model to evaluate the trap’s collection and retention efficiency. A significant linear regression between observed (trap) and predicted (model) rates (r2=0.65, p<0.001, n=97) indicated that the traps were useful for the measurement of high- and low-frequency variability in bedload transport. Potential applications of the traps in benthic oceanography include recruitment and recolonization studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Amos, C. L., A. J. Bowen, D. A. Huntley, andC. F. M. Lewis. 1988. Ripple generation under the combined influence of waves and currents on the Canadian continental shelf.Continental Shelf Research 8:1129–1153.

    Article  Google Scholar 

  • Anderson, F. E., L. Black, L. E. Watling, W. Mook, andL. M. Mayer. 1981. A temporal and spatial study of mudflat erosion and deposition.Journal of Sedimentary Petrology 51: 729–736.

    Google Scholar 

  • Baker, E. T., H. B. Milburn, andD. A. Tennant. 1988. Field assessment of sediment trap efficiency under varying flow conditions.Journal of Marine Research 46:573–592.

    Article  CAS  Google Scholar 

  • Bloesch, J. andN. Burns. 1980. A critical review of sedimentation trap technique.Schweizerische Zeitschrift für Hydrologie 42:15–55.

    Article  Google Scholar 

  • Blomqvist, S. andL. Håkanson. 1981. A review on sediment traps in aquatic environments.Archiv für Hydrobiologie 91: 101–132.

    Google Scholar 

  • Boucot, A. J. 1981. Principles of Benthic Marine Paleoecology. Academic Press, New York. 463 p.

    Google Scholar 

  • Butman, C. A. 1986. Sediment trap biases in turbulent flows: Results from a laboratory flume study.Journal of Marine Research 44:645–693.

    Google Scholar 

  • Commito, J. A. 1982. Effects ofLunatia heros predation on the population dynamics ofMya arenaria andMacoma balthica in Maine, USA.Marine Biology 69:187–193.

    Article  Google Scholar 

  • Dyer, K. R. 1986. Coastal and Estuarine Sediment Dynamics. John Wiley and Sons, Chichester. 142 p.

    Google Scholar 

  • Emerson, C. W. 1989. Wind stress limitation of benthic secondary production in shallow, soft-sediment communities.Marine Ecology Progress Series 53:65–77.

    Article  Google Scholar 

  • Emerson, C. W., T. E. Minchinton, andJ. Grant. 1988. Population structure, biomass, and respiration ofMya arenaria L. on a temperate sandflat.Journal of Experimental Marine Biology and Ecology 115:99–111.

    Article  Google Scholar 

  • Fairweather, P. G. 1988. Consequences of supply-side ecology: Manipulating the recruitment of intertidal barnacles affects the intensity of predation upon them.Biological Bulletin 175:349–354.

    Article  Google Scholar 

  • Gardner, W. D. 1980. Field assessment of sediment traps.Journal of Marine Research 38:41–52.

    Google Scholar 

  • Gordon, D. C., Jr. andC. Desplanque. 1983. Dynamics and environmental effects of ice in the Cumberland Basin in the Bay of Fundy.Canadian Journal of Fisheries and Aquatic Sciences 40:1331–1342.

    Article  Google Scholar 

  • Grant, J. 1981. Sediment transport and disturbance on an intertidal sandflat: Infaunal distribution and recolonization.Marine Ecology Progress Series 6:249–255.

    Article  Google Scholar 

  • Grant, J. 1983. The relative magnitude of biological and physical sediment reworking in an intertidal community.Journal of Marine Research 41:673–689.

    Google Scholar 

  • Grant, J. 1985. A method for measuring horizontal transport of organic carbon over sediments.Canadian Journal of Fisheries and Aquatic Sciences 42:595–602.

    Google Scholar 

  • Grant, J. 1986. Sensitivity of benthic community respiration and primary production to changes in temperature and light.Marine Biology 90:299–306.

    Article  Google Scholar 

  • Grant, J. 1988. Intertidal bedforms, sediment transport, and stabilization by benthic microalgae, p. 499–510.In P. L. de Boer, A. van Gelder, and S. D. Nio (eds.), Tide-Influenced Sedimentary Environments and Facies. D. Reidel Publishing Company, Boston, Massachusetts.

    Google Scholar 

  • Grant, J., U. V. Bathmann, andE. L. Mills. 1986a. The interaction between benthic diatom films and sediment transport.Estuarine, Coastal and Shelf Science 23:225–238.

    Article  CAS  Google Scholar 

  • Grant, J., E. L. Mills, andC. M. Hopper. 1986b. A chlorophyll budget of the sediment-water interface and the effect of stabilizing biofilms on particle fluxes.Ophelia 26:207–219.

    Google Scholar 

  • Grant, J., C. T. Enright, andA. Griswold. 1990. Resuspension and growth ofOstrea edulis: A field experiment.Marine Biology 104:51–59.

    Article  Google Scholar 

  • Guza, R. T. andE. B. Thornton. 1985. Observations of surf beat.Journal of Geophysical Research 90:3161–3172.

    Article  Google Scholar 

  • Håkanson, L., S. Floderus, andM. Wallen. 1989. Sediment trap assemblages—A methodological description.Hydrobiologia 176/177:481–490.

    Article  Google Scholar 

  • Hargrave, B. T. andG. A. Phillips. 1981. Annual in situ carbon dioxide and oxygen flux across a subtidal marine sediment.Estuarine, Coastal and Shelf Science 12:725–737.

    Article  Google Scholar 

  • Hasselmann, K., T. P. Barnett, E. Bouws, H. Carlson, D. E. Cartwright, K. Enke, J. A. Ewing, H. Gienapp, D. E. Hasselmann, P. Kruseman, A. Meerburg, P. Muller, D. J. Olbers, K. Richter, W. Sell, andH. Walden. 1973. Measurements of wind wave growth, swell and decay during the Joint North Sea Wave Project (JONSWAP).Deutsche hydrographische Zeitschrift 12:1–95.

    Google Scholar 

  • Hawkes, P. J. 1987. A wave hindcasting model, p. 73–88.In Advances in Underwater Technology, Ocean Science and Offshore Engineering. Volume 12, Modelling the Offshore Environment. Graham and Trotman Inc., Norwell, Massachusetts.

    Google Scholar 

  • Hubbell, D. W., H. H. Stevens, Jr.,J. V. Skinner, andJ. P. Beverage. 1985. New approach to calibrating bed load samplers.Journal of Hydraulic Engineering 111:677–694.

    Article  Google Scholar 

  • Jumars, P. A. andA. R. M. Nowell. 1984. Effects of benthos on sediment transport: Difficulties with functional grouping.Continental Shelf Research 3:115–130.

    Article  Google Scholar 

  • Jumars, P. A. andR. F. L. Self. 1986. Gut-marker and gutfullness methods for estimating field and laboratory effects of sediment transport on ingestion rates of deposit-feeders.Journal of Experimental Marine Biology and Ecology 98:293–310.

    Article  Google Scholar 

  • Kachel, N. B. andR. W. Sternberg. 1971. Transport of bedload as ripples during an ebb current.Marine Geology 10: 229–244.

    Article  Google Scholar 

  • King, D. B., Jr. andR. J. Seymour. 1989. State of the art in oscillatory sediment transport models, p. 371–385.In R. J. Seymour (ed.), Nearshore Sediment Transport. Plenum Press, New York.

    Google Scholar 

  • Komar, P. D. andM. C. Miller. 1975. On the comparison between the threshold of sediment motion under waves and unidirectional currents with a discussion of the practical evaluation of the threshold.Journal of Sedimentary Petrology 45: 362–367.

    Google Scholar 

  • Landahl, J. 1988. Sediment-level fluctuation in a mussel bed on a ‘protected’ sand-gravel beach.Estuarine, Coastal and Shelf Science 26:255–267.

    Article  Google Scholar 

  • Lee, C., S. G. Wakeham, andJ. I. Hedges. 1988. The measurement of oceanic particle flux—Are “swimmers” a problem?Oceanography 1:34–36.

    Google Scholar 

  • Leeder, M. R. 1982. Sedimentology. George Allen & Unwin (Publishers) Ltd., London. 344 p.

    Google Scholar 

  • Lowe, R. 1989. Measuring sediment dynamics. B. Continuous bedload sampling, p. 91–93.In R. J. Seymour (ed.), Nearshore Sediment Transport. Plenum Press, New York.

    Google Scholar 

  • Luckenbach, M. W., D. V. Huggett, andE. C. Zobrist. 1988. Sediment transport, biotic modifications, and selection of grain size in a surface deposit-feeder.Estuaries 11:134–139.

    Article  Google Scholar 

  • Ludwick, J. C. 1989. Bed load transport of sand mixtures in estuaries: A review.Journal of Geophysical Research 94:14315–14326.

    Article  Google Scholar 

  • Medcof, J. C. 1950. Burrowing habits and movements of soft-shelled clams.Fisheries Research Board of Canada, Progress Report of the Atlantic Coast Stations 50:17–21.

    Google Scholar 

  • Miller, D. C. 1989. Abrasion effects on microbes in sandy sediments.Marine Ecology Progress Series 55:73–82.

    Article  Google Scholar 

  • Miller, D. C. andR. W. Sternberg. 1988. Field measurements of the fluid and sediment-dynamic environment of a benthic deposit feeder.Journal of Marine Research 46:771–796.

    Article  Google Scholar 

  • Miller, D. C., P. A. Jumars, andA. R. M. Nowell. 1984. Effects of sediment transport on deposit feeding: Scaling arguments.Limnology and Oceanography 29:1202–1217.

    Article  Google Scholar 

  • Murphy, P. J. andM. I. Amin. 1979. Compartmented sediment trap.Journal of the Hydraulics Division, Proceedings of the American Society of Civil Engineering 105:489–500.

    Google Scholar 

  • Nickling, W. G. 1988. The initiation of particle movement by wind.Sedimentology 35:499–511.

    Article  Google Scholar 

  • Palmer, M. A. 1988. Dispersal of marine meiofauna: A review and conceptual model explaining passive transport and active emergence with implications for recruitment.Marine Ecology Progress Series 48:81–91.

    Article  Google Scholar 

  • Pattiaratchi, C. B. andM. B. Collins. 1984. Sediment transport under waves and tidal currents: A case study from the northern Bristol Channel, U.K..Marine Geology 56:27–40.

    Article  Google Scholar 

  • Pattiaratchi, C. B. andM. B. Collins. 1985. Sand transport under the combined influence of waves and tidal currents: An assessment of available formulae.Marine Geology 67:83–100.

    Article  Google Scholar 

  • Peterson, C. H. 1986. Enhancement ofMercenaria mercenaria densities in seagrass beds: Is pattern fixed during settlement season or altered by subsequent differential survival?Limnology and Oceanography 31:200–205.

    Google Scholar 

  • Rhoads, D. C. andD. K. Young. 1970. The influence of deposit-feeding organisms on sediment stability and community trophic structure.Journal of Marine Research 28:150–178.

    Google Scholar 

  • Rosati, J. D. and N. C. Kraus. 1989. Development of a portable sand trap for use in the nearshore. United States Army Corps of Engineering, Surf Zone Sediment Transport Processes, Work Unit 34321, Technical Report CERC-89-11. 109 p.

  • Sauzay, G. 1973. Tracer techniques in sediment transport: Report of the panel, p. 3–8.In Tracer Techniques in Sediment Transport, Technical Reports Series No. 145. International Atomic Energy Agency, Vienna, Austria.

    Google Scholar 

  • Savidge, W. B. andG. L. Taghon. 1988. Passive and active components of colonization following two types of disturbance on intertidal sandflat.Journal of Experimental Marine Biology and Ecology 115:137–155.

    Article  Google Scholar 

  • Sleath, J. F. A. 1982a. Friction coefficients of rippled beds in oscillatory flow.Continental Shelf Research 1:33–47.

    Article  Google Scholar 

  • Sleath, J. F. A. 1982b. The suspension of sand by waves.Journal of Hydraulic Research 77:39–55.

    Google Scholar 

  • St. Denis, M. 1969. On wind generated waves, p. 3–44.In C. L. Bretschneider (ed.), Topics in Ocean Engineering. Gulf Publishing Co., Houston, Texas.

    Google Scholar 

  • Vincent, C. E., R. A. Young, andD. J. P. Swift. 1982. On the relationship between bedload and suspended sand transport on the inner shelf, Long Island, New York.Journal of Geophysical Research 37:4163–4170.

    Article  Google Scholar 

  • Wilkinson, L. 1988. SYSTAT: The System for Statistics. SYSTAT Inc., Evanston, IL. 822 p.

    Google Scholar 

  • Williams, J. J., P. D. Thorne, andA. D. Heathershaw. 1989. Comparisons between acoustic measurements and predictions of the bedload transport of marine gavels.Sedimentology 26:973–979.

    Article  Google Scholar 

  • Zwarts, L. andJ. Wanink. 1989. Siphon size and burying depth in deposit- and suspension-feeding benthic bivalves.Marine Biology 100:227–240.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Emerson, C.W. A method for the measurement of bedload sediment transport and passive faunal transport on intertidal sandflats. Estuaries 14, 361–371 (1991). https://doi.org/10.2307/1352261

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.2307/1352261

Keywords

Navigation