Skip to main content

Advertisement

Log in

Coincidence of sedimentation peaks with diatom blooms, wind, and calcite precipitation measured in high resolution by a multi-trap

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Organisms and processes in the epilimnion of lakes determine the rate of sedimentation. To investigate the impact of phyto- and zooplankton on the sedimentation rate, we sampled the sedimenting material in Lake Stechlin. Sedimenting matter was collected using a high-resolution multi-trap in three-day intervals during the thermally stratified seasons in 2011 (at 65 m depth) and 2012 (at 20 m depth). Dry weight of the sedimented material was related to chemical, physical, and biological data collected from the water column, as well as to meteorological data. The high-resolution trap showed two mass sedimentation peaks in 2011 and one in 2012. We found that diatom blooms in spring were followed by the highest sedimentation rate in 2011, but not in 2012. The sedimentation rates significantly correlated to low wind speed, followed by a rapid formation of the thermocline, as well as to high calcite concentrations in 2011. Our results suggest that the presence of some aggregation factors like calcite crystal exopolymers or fecal pellets support the sinking process. Furthermore, the high resolution of the trap used here allowed for obtaining precise correlations between sedimentation and the measured parameters indicating relevance of temporal coincidence of multiple environmental variables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Blais, J. M. & J. Kalff, 1995. The influence of lake morphometry on sediment focussing. Limnology and Oceanography 40: 582–588.

    Article  CAS  Google Scholar 

  • Bloesch, J., 1974. Sedimentation und Phosphorhaushalt im Vierwaldstättersee (Horwer Bucht) und im Rotsee. Schweizerische Zeitschrift für Hydrologie 36: 71–186.

  • Bloesch, J., 1994. Editorial: sediment resuspension in lakes. Hydrobiologia 284: 1–3.

    Article  Google Scholar 

  • Bloesch, J. & N. M. Burns, 1980. A critical review of sedimentation trap technique. Schweizerische Zeitschrift für Hydrologie 42: 15–55.

    Google Scholar 

  • Bloesch, J. & U. Uehlinger, 1986. Horizontal differences in a eutrophic Swiss lake. Limnology and Oceanography 31: 1094–1109.

    Article  CAS  Google Scholar 

  • Boström, B., J. M. Andersen, S. Fleischer & M. Jansson, 1988. Exchange of phosphorus across the sediment-water interface. Hydrobiologia 170: 229–244.

    Article  Google Scholar 

  • Bottrel, H. H., A. Duncan, Z. M. Gliwicz, E. Grygierek, A. Herzig, A. Hillbricht-Illkowska, H. Kurasawa, P. Larsson & T. Weglenska, 1976. A review of some problems in zooplankton production studies. Norwegian Journal of Zoology 21: 477–483.

    Google Scholar 

  • Capblancq, J., 1990. Nutrient dynamics and pelagic food web interactions in oligotrophic and eutrophic environments: an overview. Hydrobiologia 207: 1–14.

    Article  CAS  Google Scholar 

  • Casper, J. S. (ed.), 1985. Lake Stechlin. A Temperate Oligotrophic Lake. Dr. W. Junk Publishers, Dordrecht.

    Google Scholar 

  • Casper, P., 1995. Lake Stechlin – background for limnological and ecotoxicological research. Limnologica 25: 277–379.

    Google Scholar 

  • Casper, P. & H.-P. Kozerski, 1999. Sedimentation. In von Tümpling, W. & G. Friedrich (eds), Methoden der Biologischen Gewässeruntersuchung, Vol. 2. Gustav Fischer Verlag, Jena: 474–482.

    Google Scholar 

  • Coale, K. H., 1990. Labyrinth of doom: a device to minimize the “swimmer” component in sediment trap collections. Limnology and Oceanography 35: 1376–1381.

    Article  CAS  Google Scholar 

  • Darchambeau, F., I. Thys, B. Leporcq, L. Hoffmann & J.-P. Descy, 2005. Influence of zooplankton stoichiometry on nutrient sedimentation in a lake system. Limnology and Oceanography 50: 905–913.

    Article  CAS  Google Scholar 

  • Dittrich, M., T. Dittrich, I. Sieber & R. Koschel, 1997. A balance analysis of phosphorus elimination by artificial calcite precipitation in a stratified hardwater lake. Water Research 31: 237–248.

    Article  CAS  Google Scholar 

  • Dittrich, M. & R. Koschel, 2002. Interactions between calcite precipitation (natural and artificial) and phosphorus cycle in the hardwater lake. Hydrobiologia 469: 49–57.

    Article  CAS  Google Scholar 

  • Eadie, B. J., R. L. Chambers, W. S. Gardner & G. L. Bell, 1984. Sediment trap studies in Lake Michigan: resuspension and chemical fluxes in the Southern Basin. Journal of Great Lakes Research 10: 307–321.

    Article  CAS  Google Scholar 

  • Ebina, L., T. Tsutsui & T. Shirai, 1983. Simultaneous determination of total nitrogen and total phosphorus in water using peroxodisulfate oxidation. Water Research 17: 1721–1726.

    Article  CAS  Google Scholar 

  • Evans, R. D., 1994. Empirical evidence of the importance of sediment resuspension in lakes. Hydrobiologia 284: 5–12.

    Article  Google Scholar 

  • Forsberg, C., 1989. Importance of sediments in understanding nutrient cyclings in lakes. Hydrobiologia 176(177): 263–277.

    Article  Google Scholar 

  • Gardner, W. D., 1980. Sediment trap dynamics and calibration: a laboratory evaluation. Journal of Marine Research 38: 17–39.

    Google Scholar 

  • Gardner, W. D., M. J. Richardson, K. R. Hinga & P. E. Biscaye, 1983. Resuspension measured with sediment traps in a high-energy environment. Earth and Planetary Science Letters 66: 262–278.

    Article  Google Scholar 

  • Goedkoop, W., K. R. Gullberg, R. K. Johnson & I. Ahlgren, 1997. Microbial response of a freshwater benthic community to a simulated diatom sedimentation event: interactive effects of a benthic fauna. Microbial Ecology 34: 131–143.

    Article  PubMed  Google Scholar 

  • Goedkoop, W. & K. Pettersson, 2000. Seasonal changes in sediment phosphorus forms in relation to sedimentation and benthic bacterial biomass in Lake Erken. Hydrobiologia 431: 41–50.

    Article  CAS  Google Scholar 

  • Graf, G., W. Bengtsson, U. Diesner, R. Schulz & H. Theede, 1982. Benthic response to sedimentation of a spring phytoplankton bloom: process and budget. Marine Biology 67: 201–208.

    Article  Google Scholar 

  • Grossart, H.-P. & M. Simon, 1998. Bacterial colonization and microbial decomposition of limnetic organic aggregates (lake snow). Aquatic Microbial Ecology 15: 127–140.

    Article  Google Scholar 

  • Grossart, H.-P., M. Simon & B. Logan, 1997. Formation of macroscopic organic aggregates (lake snow) in a large lake: the significance of transparent exopolymer particles, phytoplankton, and zooplankton. Limnology and Oceanography 42: 1651–1659.

    Article  CAS  Google Scholar 

  • Gunnison, D. & M. Alexander, 1975. Resistance and susceptibility of algae to decomposition by natural microbial communities. Limnology and Geography 20: 64–70.

    Google Scholar 

  • Hirst, A. G. & T. Kiørboe, 2002. Mortality of marine planktonic copepods: global rates and patterns. Marine Ecology Progress Series 230: 195–209.

    Article  Google Scholar 

  • Holdren, G. C. & D. E. Armstrong, 1980. Factors affecting phosphorus release from intact sediment cores. Environmental Science & Technology 14: 79–87.

    Article  Google Scholar 

  • Hondzo, M. & H. G. Stefan, 1993. Regional water temperature characteristics of lakes subjected to climate change. Climate Change 24: 187–211.

    Article  Google Scholar 

  • IPCC, 2007. Summary for policymakers. In Pachauri, R. K. & A. Reisinger (eds), Climate Change 2007: Synthesis Report. Switzerland, Geneva.

    Google Scholar 

  • Kasprzak, P., 1983. Bestimmung des Körperkohlenstoffs von Planktoncrustaceen. Limnologica 15: 191–194.

    Google Scholar 

  • Kasprzak, P. & D. Ronneberger, 1985. The secondary production. In Casper, J. S. (ed.), Lake Stechlin. A Temperate Oligotrophic Lake, Vol. 58., Monographiae biologicae Dr. W. Junk Publishers, Dordrecht: 323–345.

    Chapter  Google Scholar 

  • Kelts, K. & K. J. Hsü, 1978. Freshwater carbonate sedimentation. In Lerman, A. (ed.), Lakes. Chemistry, Geology, Physics. Springer, New York: 295–323.

    Google Scholar 

  • Kirillin, G., H.-P. Grossart & K. W. Tang, 2012. Modeling sinking rate of zooplankton carcasses: effects of stratification and mixing. Limnology and Oceanography 57: 881–894.

    Article  Google Scholar 

  • Koschel, R., 1990. Pelagic calcite precipitation and trophic state of hardwater lakes. Archiv für Hydrobiologie Beiheft Ergebnisse der Limnologie 33: 713–722.

    CAS  Google Scholar 

  • Koschel, R. & D. D. Adams, 2003. Preface: an approach to understanding a temperate oligotrophic lowland lake (Lake Stechlin, Germany). Archiv für Hydrobiologie Special Issues Advances in Limnology 58: 1–9.

    Google Scholar 

  • Koschel, R., G. Mothes & J. S. Casper, 1985. The nuclear power plant and its role in the life of Lake Stechlin. In Casper, J. S. (ed.), Lake Stechlin. A Temperate Oligotrophic Lake, Vol. 58., Monographiae biologicae Dr. W. Junk Publishers, Dordrecht: 419–431.

    Google Scholar 

  • Koschel, R., J. Benndorf, G. Proft & F. Recknagel, 1987. Model-assisted evaluation of alternative hypotheses to explain the self-protection mechanism of lakes due to calcite precipitation. Ecological Modelling 39: 59–65.

    Article  CAS  Google Scholar 

  • Lane, P. V. Z., S. L. Smith, J. L. Urban & P. E. Biscaye, 1994. Carbon flux and recycling associated with zooplanktonic fecal pellets on the shelf of the Middle Atlantic Bight. Deep-Sea Research II 41: 437–457.

    Article  CAS  Google Scholar 

  • Lastein, E., 1976. Recent sedimentation and resuspension of organic matter in eutrophic Lake Esrom, Denmark. Oikos 27: 44–49.

    Article  Google Scholar 

  • Livingstone, D. M., 2003. Impact of secular climate change on the thermal structure of a large temperate central European lake. Climate Change 57: 205–225.

    Article  Google Scholar 

  • Logan, B. E., U. Passow, A. Alldredge, H.-P. Grossart & M. Simon, 1995. Rapid formation and sedimentation of large aggregates is predictable from coagulation rates (half-lives) of transparent exopolymer particles (TEP). Deep-Sea Research II 42: 203–214.

    Article  Google Scholar 

  • McCormic, M. J., 1990. Potential changes in thermal structure and cycle of Lake Michigan due to global warming. Transactions of the American Fisheries Society 119: 183–194.

    Article  Google Scholar 

  • Meyers, P. A. & B. J. Eadie, 1993. Sources, degradation and recycling of organic matter associated with sinking particles in Lake Michigan. Organic Geochemistry 20: 47–56.

    Article  CAS  Google Scholar 

  • Molongoski, J. J. & M. J. Klug, 1980. Anaerobic metabolism of particulate organic matter in the sediments of a hypereutrophic lake. Freshwater Biology 10: 507–518.

    Article  CAS  Google Scholar 

  • Moschen, R., A. Lücke, J. Parplies, U. Radtke & G. H. Schleser, 2006. Transfer and early diagenesis of biogenic silica oxygen isotope signals during settling and sedimentation of diatoms in a temperate freshwater lake (Lake Holzmaar, Germany). Geochimica et Cosmochimica Acta 70: 4367–4379.

    Article  CAS  Google Scholar 

  • Mothes, G., 1985. Sedimentation. In Casper, J. S. (ed.), Lake Stechlin. A Temperate Oligotrophic Lake. Dr. W. Junk Publishers, Dordrecht: 386–399.

    Google Scholar 

  • Padisák, J., W. Scheffler, C. Sípos, P. Kasprzak, R. Koschel & L. Krienitz, 2003. Spatial and temporal pattern of development and decline of the spring diatom populations in Lake Stechlin in 1999. Archiv für Hydrobiologie Special Issues Advances in Limnology 58: 135–155.

    Google Scholar 

  • Padisák, J., É. Hajnal, L. Krienitz, J. Lakner & V. Üveges, 2010. Rarity, ecological memory, rate of floral change in phytoplankton – and the mystery of the Red Cock. Hydrobiologia 653: 45–64.

    Article  Google Scholar 

  • Peeters, F., D. M. Livingstone, G.-H. Goudsmit, R. Kipfer & R. Forster, 2002. Modeling 50 years of historical temperature profiles in a large central European lake. Limnology and Oceanography 47: 186–197.

    Article  Google Scholar 

  • Ploug, H., M. H. Iversen, M. Koski & E. T. Buitenhuis, 2008. Production, oxygen respiration rates, and sinking velocity of copepod fecal pellets: direct measurements of ballasting by opal and calcite. Limnology and Oceanography 53: 469–476.

    Article  CAS  Google Scholar 

  • Raidt, H. & R. Koschel, 1988. Morphology of calcite crystals in hardwater lakes. Limnologica 19: 3–12.

    CAS  Google Scholar 

  • Reynolds, C. S., 1984. The Ecology of Freshwater Phytoplankton. Cambridge University Press, Cambridge.

    Google Scholar 

  • Reynolds, C. S., R. L. Oliver & A. E. Walsby, 1987. Cyanobacterial dominance: the role of buoyancy regulation in dynamic lake environments. New Zealand Journal of Marine and Freshwater Research 21: 379–390.

    Article  Google Scholar 

  • Robertson, D. M. & R. A. Ragotzkie, 1990. Changes in the thermal structure of moderate to large sized lakes in response to changes in air temperature. Aquatic Sciences 52: 360–380.

    Article  Google Scholar 

  • Rosa, F., 1985. Sedimentation and sediment resuspension in Lake Ontario. Journal of Great Lakes Research 11: 13–25.

    Article  CAS  Google Scholar 

  • Rossknecht, H., 1980. Phosphatelimination durch autochthone Calcitfällung im Bodensee-Obersee. Archiv für Hydrobiologie 81: 35–64.

    Google Scholar 

  • Schindler, D. E. & M. D. Scheuerell, 2002. Habitat coupling in lake ecosystems. Oikos 98: 177–189.

    Article  Google Scholar 

  • Smayda, T. J., 1969. Some measurements of the sinking rate of fecal pellets. Limnology and Oceanography 14: 621–625.

    Article  Google Scholar 

  • Smetacek, V., K. von Bröckel, B. Zeitschel & W. Zenk, 1978. Sedimentation of particulate matter during a phytoplankton spring bloom in relation to the hydrographical regime. Marine Biology 47: 211–226.

    Article  Google Scholar 

  • Smetacek, V. S., 1985. Role of sinking in diatom life-history cycles: ecological, evolutionary and geological significance. Marine Biology 84: 239–251.

    Article  Google Scholar 

  • Sommer, U., 1984. Sedimentation of principal phytoplankton species in Lake Constance. Journal of Plankton Research 6: 1–14.

    Article  Google Scholar 

  • Stabel, H.-H., 1986. Calcite precipitation in Lake Constance: chemical equilibrium, sedimentation, and nucleation by algae. Limnology and Oceanography 31: 1081–1093.

    Article  CAS  Google Scholar 

  • Sturm, M., 1985. Schwebstoffe in Seen. Mitteilungen der EAWAG 19: 9–15.

    Google Scholar 

  • Tang, K. W., M. I. Gladyshev, O. P. Dubovskaya, G. Kirillin & H.-P. Grossart, 2014. Zooplankton carcasses and non-predatory mortality in freshwater and inland sea environments. Journal of Plankton Research 36: 597–612.

    Article  CAS  Google Scholar 

  • Törnblom, E. & E. Rydin, 1998. Bacterial and phosphorus dynamics in profundal Lake Erken sediments following the deposition of diatoms: a laboratory study. Hydrobiologia 364: 55–63.

    Article  Google Scholar 

  • Winberg, G. G. (ed.), 1971. Symbols, Units and Conversion Factors in Studies of Fresh Water Productivity, Vol. 23. International biological programme, London.

    Google Scholar 

Download references

Acknowledgments

U. Beyer, E. Huth, M. Lentz, U. Mallok, and M. Papke are acknowledged for excellent laboratory help, M. Sachtleben, R. Degebrodt, and H. Volkmann for technical support in the field, R. Rossberg for scanning electron microscopy, and F. Keck (INRA) for help and advice with R programming. We are grateful to the Federal Environmental Agency (UBA), K. Uhse (Langen) and O. Bath (Neuglobsow), for meteorological data. T. Mehner and the participants of a workshop “Scientific Writing” at the Leibniz-Institute of Freshwater Ecology and Inland Fisheries helped to improve the manuscript. This work was funded by Leibniz Association (Berlin) within the project “Climate driven changes in biodiversity of microbiota –TemBi” (SAW-2011-IGB-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Casper.

Additional information

Handling editor: Luigi Naselli-Flores

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 16 kb)

Supplementary material 2 (DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fuchs, A., Selmeczy, G.B., Kasprzak, P. et al. Coincidence of sedimentation peaks with diatom blooms, wind, and calcite precipitation measured in high resolution by a multi-trap. Hydrobiologia 763, 329–344 (2016). https://doi.org/10.1007/s10750-015-2388-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-015-2388-9

Keywords

Navigation