Skip to main content
Log in

Overcoming Reduced Glucocorticoid Sensitivity in Airway Disease

Molecular Mechanisms and Therapeutic Approaches

  • Leading Article
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

There is a considerable and growing unmet medical need in respiratory disease concerning effective anti-inflammatory therapies for conditions such as severe asthma, chronic obstructive pulmonary disease and cystic fibrosis. These diseases share a predominant characteristic of an enhanced and uncontrolled inflammatory response in the lungs, which contributes to disease progression, hospitalization and mortality. These diseases are poorly controlled by current anti-inflammatory therapies including glucocorticoids, which are otherwise effective in many other inflammatory conditions or in milder disease such as asthma. The exact cause of this apparent impairment of glucocorticoid function remains largely unclear; however, recent studies have now implicated a number of possible mechanisms. Central among these is an elevation of the oxidant burden in the lungs and the resulting reduction in the activity of histone deacetylase (HDAC)-2. This contributes to both the enhancement of proinflammatory mediator expression and the impaired ability of the glucocorticoid receptor (GR)-α to repress proinflammatory gene expression. The oxidant-mediated reduction in HDAC-2 activity is, in part, a result of an elevation in the phosphoinositol 3-kinase (PI3K) δ/Akt signalling pathway. Blockade of the PI3Kδ pathway restores glucocortiocoid function in both in vitro and in vivo models, and in primary cells from disease. In addition, inhibition of the PI3Kδ and PI3Kγ isoforms is anti-inflammatory in both innate and adaptive immune responses. Consequently, selective inhibition of this pathway may provide a therapeutic strategy both as a novel anti-inflammatory and in combination therapy with glucocorticoids to restore their function. However, a number of other oxidant-related and -unrelated mechanisms, including altered kinase signalling and expression of the dominant negative GRβ, may also play a role in the development of glucocorticoid insensitivity. Further elucidation of these mechanisms and pathways will enable novel therapeutic targeting for alternative anti-inflammatory drugs or combination therapies providing restoration for the anti-inflammatory action of glucocorticoids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Pujols L, Xaubet A, Ramirez J, et al. Expression of glucocorticoid receptors a and b in steroid sensitive and steroid insensitive interstitial lung diseases. Thorax 2004; 59: 687–93

    Article  PubMed  CAS  Google Scholar 

  2. Barnes PJ, Adcock IM. Glucocorticoid resistance in inflammatory diseases. Lancet 2009; 373: 1905–17

    Article  PubMed  CAS  Google Scholar 

  3. Beesley AH, Firth MJ, Ford J, et al. Glucocorticoid resistance in T-lineage acute lymphoblastic leukaemia is associated with a proliferative metabolism. Br J Cancer 2009; 100: 1926–36

    Article  PubMed  CAS  Google Scholar 

  4. Pace TW, Hu F, Miller AH. Cytokine-effects on glucocorticoid receptor function: relevance to glucocorticoid resistance and the pathophysiology and treatment of major depression. Brain Behav Immun 2007; 21: 9–19

    Article  PubMed  CAS  Google Scholar 

  5. Onda K, Rimbara E, Hirano T, et al. Role of mRNA expression of transcription factors in glucocorticoid sensitivity of peripheral blood mononuclear cells and disease state in rheumatoid arthritis. J Rheumatol 2004; 31:464–9

    PubMed  CAS  Google Scholar 

  6. Langhoff E, Pedersen PS, Koch C. Methylprednisolone resistance of cystic fibrosis lymphocytes. Pediatr Res 1984; 18:488–9

    Article  PubMed  CAS  Google Scholar 

  7. Matysiak M, Makosa B, Walczak A, et al. Patients with multiple sclerosis resisted to glucocorticoid therapy: abnormal expression of heat-shock protein 90 in glucocorticoid receptor complex. Mult Scler 2008; 14: 919–26

    Article  PubMed  CAS  Google Scholar 

  8. Mannino DM, Buist AS. Global burden of COPD: risk factors, prevalence, and future trends. Lancet 2007; 370: 765–73

    Article  PubMed  Google Scholar 

  9. Chung F, Barnes N, Allen M, et al. Assessing the burden of respiratory disease in the UK. Respir Med 2002; 96: 963–75

    Article  PubMed  CAS  Google Scholar 

  10. Barnes PJ. Immunology of asthma and chronic obstructive pulmonary disease. Nat Rev Immunol 2008; 8: 183–92

    Article  PubMed  CAS  Google Scholar 

  11. Rennard SI, Fogarty C, Kelsen S, et al., on behalf of the COPD Investigators. The safety and efficacy of infliximab in moderate to severe chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2007; 175: 926–34

    Article  PubMed  CAS  Google Scholar 

  12. Pratt WB, Toft DO. Steroid receptor interactions with heat shock protein and immunophilin chaperones. Endocr Rev 1997; 18: 306–60

    Article  PubMed  CAS  Google Scholar 

  13. Murphy PJM, Morishima Y, Chen H, et al. Visualization and mechanism of assembly of a glucocorticoid receptor·Hsp70 complex that is primed for subsequent hsp90-dependent opening of the steroid binding cleft. J Biol Chem 2003; 278: 34764–73

    Article  PubMed  CAS  Google Scholar 

  14. Kovacs JJ, Murphy PJM, Gaillard S, et al. HDAC6 regulates Hsp90 acetylation and chaperone-dependent activation of glucocorticoid receptor. Mol Cell 2005; 18: 601–7

    Article  PubMed  CAS  Google Scholar 

  15. Rhen T, Cidlowski JA. Antiinflammatory action of glucocorticoids: new mechanisms for old drugs. N Engl J Med 2005; 353: 1711–23

    Article  PubMed  CAS  Google Scholar 

  16. Reichardt HM, Tuckermann JP, Gottlicher M, et al. Repression of inflammatory responses in the absence of DNA binding by the glucocorticoid receptor. EMBO J 2001; 20: 7168–73

    Article  PubMed  CAS  Google Scholar 

  17. Haller J, Mikics E, Makara GB. The effects of non-genomic glucocorticoid mechanisms on bodily functions and the central neural system: a critical evaluation of findings. Front Neuroendocrinol 2008; 29: 273–91

    Article  PubMed  CAS  Google Scholar 

  18. Bartholome B, Spies C, Gaber T, et al. Membrane glucocorticoid receptors (mGCR) are expressed in normal human peripheral blood mononuclear cells and up-regulated after in vitro stimulation and in patients with rheumatoid arthritis. FASEB J 2004; 18: 70–80

    Article  PubMed  CAS  Google Scholar 

  19. Scheinman RI, Gualberto A, Jewell CM, et al. Characterization of mechanisms involved in transrepression of NF-kappa B by activated glucocorticoid receptors. Mol Cell Biol 1995; 15: 943–53

    PubMed  CAS  Google Scholar 

  20. Li B, Carey M, Workman JL. The role of chromatin during transcription. Cell 2007; 128: 707–19

    Article  PubMed  CAS  Google Scholar 

  21. Li J, Lin Q, Wang W, et al. Specific targeting and constitutive association of histone deacetylase complex during transcriptional repression. Genes Dev 2002; 16: 687–92

    Article  PubMed  CAS  Google Scholar 

  22. John S, Sabo PJ, Johnson TA, et al. Interaction of the glucocorticoid receptor with the chromatin landscape. Mol Cell 2008; 29: 611–24

    Article  PubMed  CAS  Google Scholar 

  23. Knoepfler PS, Eisenman RN. Sin meets NuRD and other tails of repression. Cell 1999; 99: 447–50

    Article  PubMed  CAS  Google Scholar 

  24. Silverstein RA, Ekwall K. Sin3: a flexible regulator of global gene expression and genome stability. Curr Genetics 2005; 47: 1–17

    Article  CAS  Google Scholar 

  25. Denslow SA, Wade PA. The human Mi-2/NuRD complex and gene regulation. Oncogene 2007; 26: 5433–8

    Article  PubMed  CAS  Google Scholar 

  26. Ito K, Yamamura S, Essilfie-Quaye S, et al. Histone deacetylase 2-mediated deacetylation of the glucocorticoid receptor enables NF-κB suppression. J Exp Med 2006; 203: 7–13

    Article  PubMed  CAS  Google Scholar 

  27. Allfrey VG, Mirsky AE. Structural modifications of histones and their possible role in the regulation of RNA synthesis. Science 1964; 144: 599

    Article  Google Scholar 

  28. Usmani OS, Ito K, Maneechotesuwan K, et al. Glucocorticoid receptor nuclear translocation in airway cells after inhaled combination therapy. Am J Respir Crit Care Med 2005; 172:704–12

    Article  PubMed  Google Scholar 

  29. Culpitt SV, Maziak W, Loukidis S, et al. Effect of high dose inhaled steroid on cells, cytokines, and proteases in induced sputum in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 1999; 160: 1635–9

    PubMed  CAS  Google Scholar 

  30. Auphan N, DiDonato JA, Rosette C, et al. Immuno-supression by glucocorticoids: inhibition of NF-kappaB activity through induction of I kappa B synthase. Science 1995; 270: 286–90

    Article  PubMed  CAS  Google Scholar 

  31. King EM, Holden NS, Gong W, et al. Inhibition of NF-κB-dependent Transcription by MKP-1. J Biol Chem 2009; 284: 26803–15

    Article  PubMed  CAS  Google Scholar 

  32. Abraham SM, Lawrence T, Kleiman A, et al. Antiinflammatory effects of dexamethasone are partly dependent on induction of dual specificity phosphatase 1. J Exp Med 2006; 203: 1883–9

    Article  PubMed  CAS  Google Scholar 

  33. Tuckermann JP, Kleiman A, Moriggl R, et al. Macrophages and neutrophils are the targets for immune suppression by glucocorticoids in contact allergy. J Clin Invest 2007; 117: 1381–90

    Article  PubMed  CAS  Google Scholar 

  34. Kumar R, Calhoun WJ. Differential regulation of the transcriptional activity of the glucocorticoid receptor through site-specific phosphorylation. Biologics 2008; 2: 845–54

    PubMed  CAS  Google Scholar 

  35. Chen W, Dang T, Blind RD, et al. Glucocorticoid receptor phosphorylation differentially affects target gene expression. Mol Endocrinol 2008; 22: 1754–66

    Article  PubMed  CAS  Google Scholar 

  36. Miller AL, Webb MS, Copik AJ, et al. p38 Mitogen-activated protein kinase (MAPK) is a key mediator in glucocorticoid-induced apoptosis of lymphoid cells: correlation between p38 MAPK activation and site-specific phosphorylation of the human glucocorticoid receptor at serine 211. Mol Endocrinol 2005; 19: 1569–83

    Article  PubMed  CAS  Google Scholar 

  37. Krstic MD, Rogatsky I, Yamamoto KR, et al. Mitogen-activated and cyclin-dependent protein kinases selectively and differentially modulate transcriptional enhancement by the glucocorticoid receptor. Mol Cell Biol 1997; 17: 3947–54

    PubMed  CAS  Google Scholar 

  38. Rogatsky I, Waase C, Garabedian MJ. Phosphorylation and inhibition of rat glucocorticoid receptor transcriptional activation by glycogen synthase kinase-3 (GSK-3). J Biol Chem 1998; 273: 14315–21

    Article  PubMed  CAS  Google Scholar 

  39. Szatmuíry Z, Garabedian MJ, Vil-ìek J. Inhibition of glucocorticoid receptor-mediated transcriptional activation by p38 mitogen-activated protein (MAP) kinase. J Biol Chem 2004; 279: 43708–15

    Article  CAS  Google Scholar 

  40. Duma D, Jewell CM, Cidlowski JA. Multiple glucocorticoid receptor isoforms and mechanisms of post-translational modification. J Steroid Biochem Mol Biol 2006; 102: 11–21

    Article  PubMed  CAS  Google Scholar 

  41. Lewis-Tuffin LJ, Jewell CM, Bienstock RJ, et al. Human glucocorticoid receptor b binds RU-486 and is transcriptionally active. Mol Cell Biol 2007; 27: 2266–82

    Article  PubMed  CAS  Google Scholar 

  42. Charmandari E, Chrousos GP, Ichijo T, et al. The human glucocorticoid receptor (hGR) β isoform suppresses the transcriptional activity of hGRα by interfering with formation of active coactivator complexes. Mol Endocrinol 2005; 19: 52–64

    Article  PubMed  CAS  Google Scholar 

  43. Kino T, Manoli I, Kelkar S, et al. Glucocorticoid receptor (GR) β has intrinsic, GRα-independent transcriptional activity. Biochem Biophys Res Commun 2009; 381: 671–5

    Article  PubMed  CAS  Google Scholar 

  44. Lu N, Cidlowski J. The origin and functions of multiple human glucocorticoid receptor isoforms. Ann N Y Acad Sci 2004; 1024: 102–23

    Article  PubMed  CAS  Google Scholar 

  45. Bateman ED, Hurd SS, Barnes PJ, et al. Global strategy for asthma management and prevention: GINA executive summary. Eur Respir J 2008; 31: 143–78

    Article  PubMed  CAS  Google Scholar 

  46. Macedo P, Hew M, Torrego A, et al. Inflammatory biomarkers in airways of patients with severe asthma compared with non-severe asthma. Clin Exp Allergy 2009; 39: 1668–76

    Article  PubMed  CAS  Google Scholar 

  47. Moore WC, Bleecker ER, Curran-Everett D, et al. Characterization of the severe asthma phenotype by the National Heart, Lung, and Blood Institute’s Severe Asthma Research Program. J Allergy Clin Immunol 2007; 119: 405–13

    Article  PubMed  Google Scholar 

  48. Hew M, Bhavsar P, Torrego A, et al., for the National Heart Lung and Blood Institute’s Severe Asthma Research Program. Relative corticosteroid insensitivity of peripheral blood mononuclear cells in severe asthma. Am J Respir Crit Care Med 2006; 174: 134–41

    Article  PubMed  CAS  Google Scholar 

  49. Bhavsar P, Hew M, Khorasani N, et al. Relative corticosteroid insensitivity of alveolar macrophages in severe asthma compared with non-severe asthma. Thorax 2008; 63: 784–90

    Article  PubMed  CAS  Google Scholar 

  50. Goleva E, Hauk PJ, Boguniewicz J, et al. Airway remodeling and lack of bronchodilator response in steroidresistant asthma. J Allergy Clin Immunol 2007; 120:1065–72

    Article  PubMed  Google Scholar 

  51. Barnes PJ. The cytokine network in asthma and chronic obstructive pulmonary disease. J Clin Invest 2008; 118: 3546–56

    Article  PubMed  CAS  Google Scholar 

  52. Kurashima K, Fujimura M, Ishiura Y, et al. Asthma severity is associated with an increase in both blood CXCR3+and CCR4+T cells. Respirology 2006; 11: 152–7

    Article  PubMed  Google Scholar 

  53. van Rensen ELJ, Sont JK, Evertse CE, et al., AMPUL Study Group. Bronchial CD8 cell infiltrate and lung function decline in asthma. Am J Respir Crit Care Med 2005; 172: 837–41

    Article  PubMed  Google Scholar 

  54. Jatakanon A, Uasuf C, Maziak W, et al. Neutrophilic inflammation in severe persistent asthma. Am J Respir Crit Care Med 1999; 160: 1532–9

    PubMed  CAS  Google Scholar 

  55. Cho SH, Stanciu LA, Holgate ST, et al. Increased interleukin-4, interleukin-5, and interferon-g in airway CD4+ and CD8+ T cells in atopic asthma. Am J Respir Crit Care Med 2005; 171:224–30

    Article  PubMed  Google Scholar 

  56. Wood LG, Gibson PG. Reduced circulating antioxidant defences are associated with airway hyper-responsiveness, poor control and severe disease pattern in asthma. Br J Nutr 2010; 103(5): 735–41

    Article  PubMed  CAS  Google Scholar 

  57. Fitzpatrick A, Brown L, Holguin F, et al. Levels of nitric oxide oxidation products are increased in the epithelial lining fluid of children with persistent asthma. J Allergy Clin Immunol 2009; 124: 990–6. e1-9

    Article  PubMed  CAS  Google Scholar 

  58. Tomlinson JEM, McMahon AD, Chaudhuri R, et al. Efficacy of low and high dose inhaled corticosteroid in smokers versus non-smokers with mild asthma. Thorax 2005; 60: 282–7

    Article  PubMed  CAS  Google Scholar 

  59. Thomson NC, Chaudhuri R, Livingston E. Asthma and cigarette smoking. Eur Respir J 2004; 24: 822–33

    Article  PubMed  CAS  Google Scholar 

  60. Chung KF, Adcock IM. Multifaceted mechanisms in COPD: inflammation, immunity, and tissue repair and destruction. Eur Respir J 2008; 31: 1334–56

    Article  PubMed  CAS  Google Scholar 

  61. Global Initiative for Chronic Obstructive Lung Disease. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease. NHLBI/ WHO workshop report. Bethesda (MD): National Heart, Lung, and Blood Institute, 2008 Jan 1: 1-100. NIH publication no.: 2701

    Google Scholar 

  62. Hogg JC, Chu F, Utokaparch S, et al. The nature of small-airway obstruction in chronic obstructive pulmonary disease. N Engl J Med 2004; 350: 2645–53

    Article  PubMed  CAS  Google Scholar 

  63. Patel I, Seemungal T, Wilks M, et al. Relationship between bacterial colonisation and the frequency, character, and severity of COPD exacerbations. Thorax 2002; 57: 759–64

    Article  PubMed  CAS  Google Scholar 

  64. Sethi S. Bacterial infection and the pathogenesis of COPD. Chest 2000; 117: 286S–91S

    Article  PubMed  CAS  Google Scholar 

  65. Yang I, Fong K, Sim E, et al. Inhaled corticosteroids for stable chronic obstructive disease. Cochrane Database Syst Rev 2007; (2): CD002991

  66. Suissa S, Ernst P, Vandemheen KL, et al. Methodological issues in therapeutic trials of COPD. Eur Respir J 2008; 31: 927–33

    Article  PubMed  CAS  Google Scholar 

  67. Keatings VM, Jatakanon A, Worsdell YM, et al. Effects of inhaled and oral glucocorticoids on inflammatory indices in asthma and COPD. Am J Respir Crit Care Med 1997; 155: 542–8

    PubMed  CAS  Google Scholar 

  68. Bourbeau J, Christodoulopoulos P, Maltais F, et al. Effect of salmeterol/fluticasone propionate on airway inflammation in COPD: a randomised controlled trial. Thorax 2007; 62: 938–43

    Article  PubMed  Google Scholar 

  69. Culpitt SV, Rogers DF, Shah P, et al. Impaired inhibition by dexamethasone of cytokine release by alveolar macrophages from patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2003; 167: 24–31

    Article  PubMed  Google Scholar 

  70. O’Sullivan BP, Freedman SD. Cystic fibrosis. Lancet 2009; 373: 1891–904

    Article  PubMed  Google Scholar 

  71. Karp CL, Flick LM, Park KW, et al. Defective lipoxinmediated anti-inflammatory activity in the cystic fibrosis airway. Nat Immunol 2004; 5: 388–92

    Article  PubMed  CAS  Google Scholar 

  72. Carrabino S, Carpani D, Livraghi A, et al. Dysregulated interleukin-8 secretion and NF-]κB activity in human cystic fibrosis nasal epithelial cells. J Cyst Fibros 2006; 5: 113–9

    Article  PubMed  CAS  Google Scholar 

  73. Freedman SD, Blanco PG, Zaman MM, et al. Association of cystic fibrosis with abnormalities in fatty acid metabolism. N Engl J Med 2004; 350: 560–9

    Article  PubMed  CAS  Google Scholar 

  74. Konstan MW. Ibuprofen therapy for cystic fibrosis lung disease: revisited. Curr Opin Pulm Med 2008; 14(6): 567–73

    Article  PubMed  CAS  Google Scholar 

  75. Gross KL, Cidlowski JA. Tissue-specific glucocorticoid action: a family affair. Trends Endocrinol Metab 2008; 19: 331–9

    Article  PubMed  CAS  Google Scholar 

  76. Ciencewicki J, Trivedi S, Kleeberger SR. Oxidants and the pathogenesis of lung diseases. J Allergy Clin Immunol 2008; 122: 456–68

    Article  PubMed  CAS  Google Scholar 

  77. Hwang NR, Yim S, Kim YM, et al. Oxidative modifications of glyceraldehyde-3-phosphate dehydrogenase play a key role in its multiple cellular functions. Biochem J 2009; 423: 253–64

    Article  PubMed  CAS  Google Scholar 

  78. Kitagawa H, Yamaoka I, Akimoto C, et al. A reduction state potentiates the glucocorticoid response through receptor protein stabilization. Genes Cells 2007; 12: 1281–7

    Article  PubMed  CAS  Google Scholar 

  79. Wright VP, Reiser PJ, Clanton TL. Redox modulation of global phosphatase activity and protein phosphorylation in intact skeletal muscle. J Physiol 2009; 587: 5767–81

    Article  PubMed  CAS  Google Scholar 

  80. Ito K, Lim S, Caramori G, et al. Cigarette smoking reduces histone deacetylase 2 expression, enhances cytokine expression, and inhibits glucocorticoid actions in alveolar macrophages. FASEB J 2001; 15(6): 1110–2

    PubMed  CAS  Google Scholar 

  81. Marwick JA, Caramori G, Stevenson CS, et al. Inhibition of PI3Kδ restores glucocorticoid function in smoking-induced airway inflammation in mice. Am J Respir Crit Care Med 2009; 179: 542–8

    Article  PubMed  CAS  Google Scholar 

  82. Rottner M, Freyssinet JM, Martinez MC. Mechanisms of the noxious inflammatory cycle in cystic fibrosis. Respir Res 2009; 10: 23

    Article  PubMed  CAS  Google Scholar 

  83. Rahman I, Marwick J, Kirkham P. Redox modulation of chromatin remodeling: impact on histone acetylation and deacetylation, NF-κB and pro-inflammatory gene expression. Biochem Pharmacol 2004; 68: 1255–67

    Article  PubMed  CAS  Google Scholar 

  84. Marwick JA, Kirkham PA, Stevenson CS, et al. Cigarette smoke alters chromatin remodeling and induces proinflammatory genes in rat lungs. Am J Respir Cell Mol Biol 2004; 31: 633–42

    Article  PubMed  CAS  Google Scholar 

  85. Meja KK, Rajendrasozhan S, Adenuga D, et al. Curcumin restores corticosteroid function in monocytes exposed to oxidants by maintaining HDAC2. Am J Respir Cell Mol Biol 2008; 39: 312–23

    Article  PubMed  CAS  Google Scholar 

  86. Marwick JA, Ito K, Adcock IM, et al. Oxidative stress and steroid resistance in asthma and COPD: pharmacological manipulation of HDAC-2 as a therapeutic strategy. Expert Opin Ther Targets 2007; 11: 745–55

    Article  PubMed  CAS  Google Scholar 

  87. Ito K, Hanazawa T, Tomita K, et al. Oxidative stress reduces histone deacetylase 2 activity and enhances IL-8 gene expression: role of tyrosine nitration. Biochem Biophys Res Commun 2004; 315: 240–5

    Article  PubMed  CAS  Google Scholar 

  88. Osoata GO, Yamamura S, Ito M, et al. Nitration of distinct tyrosine residues causes inactivation of histone deacetylase 2. Biochem Biophys Res Commun 2009; 384: 366–71

    Article  PubMed  CAS  Google Scholar 

  89. Galasinski SC, Resing KA, Goodrich JA, et al. Phosphatase inhibition leads to histone deacetylases 1 and 2 phosphorylation and disruption of corepressor interactions. J Biol Chem 2002; 277: 19618–26

    Article  PubMed  CAS  Google Scholar 

  90. Cosio BG, Mann B, Ito K, et al. Histone acetylase and deacetylase activity in alveolar macrophages and blood mononocytes in asthma. Am J Respir Crit Care Med 2004; 170: 141–7

    Article  PubMed  Google Scholar 

  91. Ito K, Ito M, Elliott WM, et al. Decreased histone deacetylase activity in chronic obstructive pulmonary disease. N Engl J Med 2005; 352: 1967–76

    Article  PubMed  CAS  Google Scholar 

  92. Cosio BG, Tsaprouni L, Ito K, et al. Theophylline restores histone deacetylase activity and steroid responses in COPD macrophages. J Exp Med 2004; 200: 689–95

    Article  PubMed  CAS  Google Scholar 

  93. Bartling TR, Drumm ML. Loss of CFTR results in reduction of histone deacetylase 2 in airway epithelial cells. Am J Physiol Lung Cell Mol Physiol 2009; 297: L35–43

    Article  PubMed  CAS  Google Scholar 

  94. Bartling TR, Drumm ML. Oxidative stress causes IL8 promoter hyperacetylation in cystic fibrosis airway cell models. Am J Respir Cell Mol Biol 2009; 40: 58–65

    Article  PubMed  CAS  Google Scholar 

  95. Gross KL, Lu NZ, Cidlowski JA. Molecular mechanisms regulating glucocorticoid sensitivity and resistance. Mol Cell Endocrinol 2009; 300: 7–16

    Article  PubMed  CAS  Google Scholar 

  96. Carmichael J, Paterson I, Diaz P, et al. Corticosteroid resistance in asthma. BMJ 1981; 282: 1419–22

    Article  PubMed  CAS  Google Scholar 

  97. Hakonarson H, Bjornsdottir US, Halapi E, et al. Profiling of genes expressed in peripheral blood mononuclear cells predicts glucocorticoid sensitivity in asthma patients. Proc Nat Acad Sci U S A 2005; 102: 14789–94

    Article  CAS  Google Scholar 

  98. Smolonska J, Wijmenga C, Postma DS, et al. Meta-analyses on suspected chronic obstructive pulmonary disease genes: a summary of 20 years’ research. Am J Respir Crit Care Med 2009; 180:618–31

    Article  PubMed  CAS  Google Scholar 

  99. Young RP, Hopkins R, Black PN, et al. Functional variants of antioxidant genes in smokers with COPD and in those with normal lung function. Thorax 2006; 61: 394–9

    Article  PubMed  CAS  Google Scholar 

  100. Mak JCW, Ho SP, Yu WC, et al., on behalf of the Hong Kong Thoracic Society Chronic Obstructive Pulmonary Disease Study Group. Polymorphisms and functional activity in superoxide dismutase and catalase genes in smokers with COPD. Eur Respir J 2007; 30: 684–90

    Article  PubMed  CAS  Google Scholar 

  101. Galliher-Beckley AJ, Cidlowski JA. Emerging roles of glucocorticoid receptor phosphorylation in modulating glucocorticoid hormone action in health and disease. IUBMB Life 2009; 61: 979–86

    Article  PubMed  CAS  Google Scholar 

  102. Galliher-Beckley AJ, Williams JG, Collins JB, et al. Glycogen synthase kinase 3β-mediated serine phosphorylation of the human glucocorticoid receptor redirects gene expression profiles. Mol Cell Biol 2008; 28: 7309–22

    Article  PubMed  CAS  Google Scholar 

  103. Irusen E, Matthews JG, Takahashi A, et al. p38 Mitogen-activated protein kinase-induced glucocorticoid receptor phosphorylation reduces its activity: role in steroidinsensitive asthma. J Allergy Clin Immunol 2002; 109: 649–57

    Article  PubMed  CAS  Google Scholar 

  104. Liu W, Liang Q, Balzar S, et al. Cell-specific activation profile of extracellular signal-regulated kinase 1/2, Jun N-terminal kinase, and p38 mitogen-activated protein kinases in asthmatic airways. J Allergy Clin Immunol 2008; 121: 893–902

    Article  PubMed  CAS  Google Scholar 

  105. Renda T, Baraldo S, Pelaia G, et al. Increased activation of p38 MAPK in COPD. Eur Respir J 2008; 31: 62–9

    Article  PubMed  CAS  Google Scholar 

  106. Rumora L, Milevoj L, Popovic-Grle S, et al. Levels changes of blood leukocytes and intracellular signalling pathways in COPD patients with respect to smoking attitude. Clin Biochem 2008; 41: 387–94

    Article  PubMed  CAS  Google Scholar 

  107. Marwick J, Caramori G, Adcock IM, et al. PI3Kdelta expression is increased in peripheral lung macrophges in COPD patients [abstract]. Eur Respir J 2009; 34 Suppl. 53: P917

    Google Scholar 

  108. Verhaeghe C, Remouchamps C, Hennuy B, et al. Role of IKK and ERK pathways in intrinsic inflammation of cystic fibrosis airways. Biochem Pharmacol 2007; 73: 1982–94

    Article  PubMed  CAS  Google Scholar 

  109. Muselet-Charlier C, Roque T, Boncoeur E, et al. Enhanced IL-1β-induced IL-8 production in cystic fibrosis lung epithelial cells is dependent of both mitogen-activated protein kinases and NF-κB signaling. Biochem Biophys Res Commun 2007; 357: 402–7

    Article  PubMed  CAS  Google Scholar 

  110. Strickland I, Kisich K, Hauk PJ, et al. High constitutive glucocorticoid receptor β in human neutrophils enables them to reduce their spontaneous rate of cell death in response to corticosteroids. J Exp Med 2001; 193: 585–94

    Article  PubMed  CAS  Google Scholar 

  111. Gagliardo R, Chanez P, Vignola AM, et al. Glucocorticoid receptor alpha and beta in glucocorticoid dependent asthma. Am J Respir Crit Care Med 2000; 162: 7–13

    PubMed  CAS  Google Scholar 

  112. Bergeron C, Fukakusa M, Olivenstein R, et al. Increased glucocorticoid receptor-β expression, but not decreased histone deacetylase 2, in severe asthma. J Allergy Clin Immunol 2006; 117: 703–5

    Article  PubMed  CAS  Google Scholar 

  113. Korn SH, Thunnissen FB, Wesseling GJ, et al. Glucocorticoid receptor mRNA levels in bronchial epithelial cells of patients with COPD: influence of glucocorticoids. Respir Med 1998; 92: 1102–9

    Article  PubMed  CAS  Google Scholar 

  114. Ito K, Herbert C, Siegle JS, et al. Steroid-resistant neutrophilic inflammation in a mouse model of an acute exacerbation of asthma. Am J Respir Cell Mol Biol 2008; 39: 543–50

    Article  PubMed  CAS  Google Scholar 

  115. Barnes PJ. New molecular targets for the treatment of neutrophilic diseases. J Allergy Clin Immunol 2007; 119:1055–62

    Article  PubMed  CAS  Google Scholar 

  116. Pujols L, Mullol J, Roca-Ferrer J, et al. Expression of glucocorticoid receptor alpha- and beta-isoforms in human cells and tissues. Am J Physiol Cell Physiol 2002; 283: C1324–31

    PubMed  CAS  Google Scholar 

  117. Meagher LC, Cousin JM, Seckl JR, et al. Opposing effects of glucocorticoids on the rate of apoptosis in neutrophilic and eosinophilic granulocytes. J Immunol 1996; 156: 4422–8

    PubMed  CAS  Google Scholar 

  118. Ward C, Chilvers ER, Lawson MF, et al. NF-κB activation is a critical regulator of human granulocyte apoptosis in vitro. J Biol Chem 1999; 274: 4309–18

    Article  PubMed  CAS  Google Scholar 

  119. Kleiman A, Tuckermann JP. Glucocorticoid receptor action in beneficial and side effects of steroid therapy: lessons from conditional knockout mice. Mol Cell Endocrinol 2007; 275: 98–108

    Article  PubMed  CAS  Google Scholar 

  120. Schacke H, Berger M, Rehwinkel H, et al. Selective glucocorticoid receptor agonists (SEGRAs): novel ligands with an improved therapeutic index. Mol Cell Endocrinol 2007; 275: 109–17

    Article  PubMed  CAS  Google Scholar 

  121. Adcock I, Chung K, Caramori G, et al. Kinase inhibitors in airway inflammation. Eur J Pharmacol 2006; 533: 118–32

    Article  PubMed  CAS  Google Scholar 

  122. Kumar S, Boehm J, Lee JC. p38 MAP kinases: key signalling molecules as therapeutic targets for inflammatory diseases. Nat Rev Drug Discov 2003; 2: 717–26

    Article  PubMed  CAS  Google Scholar 

  123. Saccani S, Pantano S, Natoli G. p38-dependent marking of inflammatory genes for increased NF-κB recruitment. Nat Immunol 2002; 3: 69–75

    Article  PubMed  CAS  Google Scholar 

  124. Tudhope SJ, Finney-Hayward TK, Nicholson AG, et al. Different mitogen-activated protein kinase-dependent cytokine responses in cells of the monocyte lineage. J Pharmacol Exp Ther 2008; 324: 306–12

    Article  PubMed  CAS  Google Scholar 

  125. Smith S, Fenwick P, Nicholson A, et al. Inhibitory effect of p38 mitogen-activated protein kinase inhibitors on cytokine release from human macrophages. Br J Pharmacol 2006; 149: 393–404

    Article  PubMed  CAS  Google Scholar 

  126. Raia V, Maiuri L, Ciacci C, et al. Inhibition of p38 mitogen activated protein kinase controls airway inflammation in cystic fibrosis. Thorax 2005; 60: 773–80

    Article  PubMed  CAS  Google Scholar 

  127. Marwick JA, Wallis G, Meja K, et al. Oxidative stress modulates theophylline effects on steroid responsiveness. Biochem Biophys Res Commun 2008; 377: 797–802

    Article  PubMed  CAS  Google Scholar 

  128. Medicherla S, Fitzgerald MF, Spicer D, et al. p38α-Selective mitogen-activated protein kinase inhibitor sd-282 reduces inflammation in a subchronic model of tobacco smoke-induced airway inflammation. J Pharmacol Exp Ther 2008; 324: 921–9

    Article  PubMed  CAS  Google Scholar 

  129. Bhavsar PK, Khorasani N, Johnson M, et al. Reversal of relative corticosteroid insensitivity in PBMCs from patients with COPD by p38 MAPK inhibition [abstract]. Am J Respir Crit Care Med 2009; 179: A6187

    Google Scholar 

  130. Rommel C, Camps M, Ji H. PI3Kδ and PI3Kγ: partners in crime in inflammation in rheumatoid arthritis and beyond? Nat Rev Immunol 2007; 7: 191–201

    Article  PubMed  CAS  Google Scholar 

  131. Lee KS, Lee HK, Hayflick JS, et al. Inhibition of phosphoinositide 3-kinase δ attenuates allergic airway inflammation and hyperresponsiveness in murine asthma model. FASEB J 2006; 20: 455–65

    Article  PubMed  CAS  Google Scholar 

  132. Lee KS, Park SJ, Kim SR, et al. Phosphoinositide 3-kinase-δ inhibitor reduces vascular permeability in a murine model of asthma. J Allergy Clin Immunol 2006; 118: 403–9

    Article  PubMed  CAS  Google Scholar 

  133. Ali K, Bilancio A, Thomas M, et al. Essential role for the p110δ phosphoinositide 3-kinase in the allergic response. Nature 2004; 431: 1007–11

    Article  PubMed  CAS  Google Scholar 

  134. Sasaki T, Irie-Sasaki J, Jones RG, et al. Function of PI3K in thymocyte development, T cell activation, and neutrophil migration. Science 2000; 287: 1040–6

    Article  PubMed  CAS  Google Scholar 

  135. Laffargue M, Calvez R, Finan P, et al. Phosphoinositide 3-kinase gamma is an essential amplifier of mast cell function. Immunity 2002; 16: 441–51

    Article  PubMed  CAS  Google Scholar 

  136. Marone R, Cmiljanovic V, Giese B, et al. Targeting phosphoinositide 3-kinase: moving towards therapy. Biochim Biophys Acta 2008; 1784: 159–85

    Article  PubMed  CAS  Google Scholar 

  137. Condliffe AM, Davidson K, Anderson KE, et al. Sequential activation of class IB and class IA PI3K is important for the primed respiratory burst of human but not murine neutrophils. Blood 2005; 106: 1432–40

    Article  PubMed  CAS  Google Scholar 

  138. Sadhu C, Masinovsky B, Dick K, et al. Essential role of phosphoinositide 3-kinase δ in neutrophil directional movement. J Immunol 2003; 170: 2647–54

    PubMed  CAS  Google Scholar 

  139. Ferreira AM, Isaacs H, Hayflick JS, et al. The p110δ isoform of PI3K differentially regulates β1 and β2 integrin-mediated monocyte adhesion and spreading and modulates diapedesis. Microcirculation 2006; 13: 439–56

    Article  PubMed  CAS  Google Scholar 

  140. Ward SG, Marelli-berg FM. Mechanisms of chemokine and antigen-dependent T-lymphocyte navigation. Biochem J 2009; 418: 13–27

    Article  PubMed  CAS  Google Scholar 

  141. Cai S, Chen P, Zhang C, et al. Oral N-acetylcysteine attenuates pulmonary emphysema and alveolar septal cell apoptosis in smoking-induced COPD in rats. Respirology 2009; 14: 354–9

    Article  PubMed  Google Scholar 

  142. Rahman I. Antioxidant therapeutic advances in COPD. Ther Adv Respir Dis 2008; 2: 351–74

    Article  PubMed  Google Scholar 

  143. Schermer T, Chavannes N, Dekhuijzen J, et al. Fluticasone and N-acetylcysteine in primary care patients with COPD or chronic bronchitis. Respir Med 2009; 103: 542

    Article  PubMed  Google Scholar 

  144. Stav D, Raz M. Effect of N-Acetylcysteine on air trapping in COPD. Chest 2009; 136: 381–6

    Article  PubMed  CAS  Google Scholar 

  145. Calverley PMA, Anderson JA, Celli B, et al. Salmeterol and fluticasone propionate and survival in chronic obstructive pulmonary disease. N Engl J Med 2007; 356: 775–89

    Article  PubMed  CAS  Google Scholar 

  146. Chung KF, Caramori C, Adcock IM. Inhaled corticosteroids as combination therapy with β-adrenergic agonists in airways disease: present and future. Eur J Clin Pharmacol 2009; 65: 835–71

    Article  CAS  Google Scholar 

  147. Evans DJ, Taylor DA, Zetterstrom O, et al. Theophylline plus low dose inhaled steroid as effective as high dose steroid in the control of asthma. N Engl J Med 1997; 337: 1412–8

    Article  PubMed  CAS  Google Scholar 

  148. Ito K, Lim S, Caramori G, et al. A molecular mechanism of action of theophylline: induction of histone deacetylase activity to decrease inflammatory gene expression. Proc Nat Acad Sci U S A 2002; 99: 8921–6

    Article  CAS  Google Scholar 

  149. Ukena D, Harnest U, Sakalauskas R, et al. Comparison of addition of theophylline to inhaled steroid with doubling of the dose of inhaled steroid in asthma. Eur Respir J 1997; 10: 2754–60

    Article  PubMed  CAS  Google Scholar 

  150. Molnarfi N, Brandt KJ, Gruaz L, et al. Differential regulation of cytokine production by PI3Kd in human monocytes upon acute and chronic inflammatory conditions. Mol Immunol 2008; 45: 3419–27

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

JAM holds funding from the European Respiratory Society and Medical Research Scotland (fellowship number 87). IMA and KFC hold funding from the EU, Medical Research Council and the Wellcome Trust. IMA has received honoraria for attending Advisory Board meetings or for consultancy work for Chiesi, GSK and Novartis with regard to treatment of asthma and COPD; he has also received research grants from GSK, AstraZeneca and Pfizer. KFC has received honoraria for attending Advisory Board meetings or for consultancy work for Gilead, GSK, Novartis, Boehringer Ingelheim and Merck with regard to treatment of asthma and COPD; he has also received research grants from GSK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John A. Marwick.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marwick, J.A., Adcock, I.M. & Chung, K.F. Overcoming Reduced Glucocorticoid Sensitivity in Airway Disease. Drugs 70, 929–948 (2010). https://doi.org/10.2165/10898520-000000000-00000

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/10898520-000000000-00000

Keywords

Navigation