Skip to main content
Log in

Idiopathic Pulmonary Fibrosis

New Concepts in Pathogenesis and Implications for Drug Therapy

  • Review Article
  • Published:
Treatments in Respiratory Medicine

Abstract

Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, and usually fatal pulmonary disease for which there are no proven drug therapies. Anti-inflammatory and immunosuppressive agents have been largely ineffective. The precise relationship of IPF to other idiopathic interstitial pneumonias (IIPs) is not known, despite the observation that different histopathologic patterns of IIP may coexist in the same patient. We propose that these different histopathologic ‘reaction’ patterns may be determined by complex interactions between host and environmental factors that alter the local alveolar milieu. Recent paradigms in IPF pathogenesis have focused on dysregulated epithelial-mesenchymal interactions, an imbalance in TH1/TH2 cytokine profile and potential roles for aberrant angiogenesis. In this review, we discuss these evolving concepts in disease pathogenesis and emerging therapies designed to target pro-fibrogenic pathways in IPF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Table I

Similar content being viewed by others

Notes

  1. 1 The use of trade names is for product identification purposes only and does not imply endorsement.

References

  1. Schwartz DA, Helmers RA, Galvin JR, et al. Determinants of survival in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 1994; 149 (2 Pt 1): 450–4

    PubMed  CAS  Google Scholar 

  2. KingJr TE, Tooze JA, Schwarz MI, et al. Predicting survival in idiopathic pulmonary fibrosis: scoring system and survival model. Am J Respir Crit Care Med 2001; 164(7): 1171–81

    PubMed  Google Scholar 

  3. American Thoracic Society. Idiopathic pulmonary fibrosis: diagnosis and treatment. International consensus statement. American Thoracic Society (ATS), and the European Respiratory Society (ERS). Am J Respir Crit Care Med 2000; 161 (2 Pt 1): 646–64

    Google Scholar 

  4. Coultas DB, Zumwalt RE, Black WC, et al. The epidemiology of interstitial lung diseases. Am J Respir Crit Care Med 1994; 150(4): 967–72

    PubMed  CAS  Google Scholar 

  5. Lama VN, Flaherty KR, Toews GB, et al. Prognostic value of desaturation during a 6-minute walk test in idiopathic interstitial pneumonia. Am J Respir Crit Care Med 2003; 168(9): 1084–90

    Article  PubMed  Google Scholar 

  6. Hanson D, Winterbauer RH, Kirtland SH, et al. Changes in pulmonary function test results after 1 year of therapy as predictors of survival in patients with idiopathic pulmonary fibrosis. Chest 1995; 108(2): 305–10

    Article  PubMed  CAS  Google Scholar 

  7. Flaherty KR, Mumford JA, Murray S, et al. Prognostic implications of physiologic and radiographic changes in idiopathic interstitial pneumonia. Am J Respir Crit Care Med 2003; 168(5): 543–8

    Article  PubMed  Google Scholar 

  8. Gay SE, Kazerooni EA, Toews GB, et al. Idiopathic pulmonary fibrosis: predicting response to therapy and survival. Am J Respir Crit Care Med 1998; 157 (4 Pt 1): 1063–72

    PubMed  CAS  Google Scholar 

  9. Nadrous HF, Pellikka PA, Krowka MJ, et al. Pulmonary hypertension in patients with idiopathic pulmonary fibrosis. Chest 2005; 128(4): 2393–9

    Article  PubMed  Google Scholar 

  10. Hunninghake GW, Lynch DA, Galvin JR, et al. Radiologic findings are strongly associated with a pathologic diagnosis of usual interstitial pneumonia. Chest 2003; 124(4): 1215–23

    Article  PubMed  Google Scholar 

  11. Kazerooni EA, Martinez FJ, Flint A, et al. Thin-section CT obtained at 10-mm increments versus limited three-level thin-section CT for idiopathic pulmonary fibrosis: correlation with pathologic scoring. AJR Am J Roentgenol 1997; 169(4): 977–83

    PubMed  CAS  Google Scholar 

  12. Flaherty KR, Thwaite EL, Kazerooni EA, et al. Radiological versus histological diagnosis in UIP and NSIP: survival implications. Thorax 2003; 58(2): 143–8

    Article  PubMed  CAS  Google Scholar 

  13. Flaherty KR, Travis WD, Colby TV, et al. Histopathologic variability in usual and nonspecific interstitial pneumonias. Am J Respir Crit Care Med 2001; 164(9): 1722–7

    PubMed  CAS  Google Scholar 

  14. Katzenstein AL, Myers JL. Idiopathic pulmonary fibrosis: clinical relevance of pathologic classification. Am J Respir Crit Care Med 1998; 157 (4 Pt 1): 1301–15

    PubMed  CAS  Google Scholar 

  15. King Jr TE, Schwarz MI, Brown K, et al. Idiopathic pulmonary fibrosis: relationship between histopathologic features and mortality. Am J Respir Crit Care Med 2001; 164(6): 1025–32

    PubMed  Google Scholar 

  16. Katzenstein AL. Pathogenesis of ‘fibrosis’ in interstitial pneumonia: an electron microscopic study. Hum Pathol 1985; 16(10): 1015–24

    Article  PubMed  CAS  Google Scholar 

  17. Kasper M, Haroske G. Alterations in the alveolar epithelium after injury leading to pulmonary fibrosis. Histol Histopathol 1996; 11(2): 463–83

    PubMed  CAS  Google Scholar 

  18. Chilosi M, Poletti V, Murer B, et al. Abnormal re-epithelialization and lung remodeling in idiopathic pulmonary fibrosis: the role of deltaN-p 63. Lab Invest 2002; 82(10): 1335–45

    PubMed  CAS  Google Scholar 

  19. Kuwano K, Nomoto Y, Kunitake R, et al. Detection of adenovirus El A DNA in pulmonary fibrosis using nested polymerase chain reaction. Eur Respir J 1997; 10(7): 1445–9

    Article  PubMed  CAS  Google Scholar 

  20. Stewart JP, Egan JJ, Ross J, et al. The detection of Epstein-Barr virus DNA in lung tissue from patients with idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 1999; 159 (4 Pt 1): 1336–41

    PubMed  CAS  Google Scholar 

  21. Kelly BG, Lok SS, Hasleton PS, et al. A rearranged form of Epstein-Barr virus DNA is associated with idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 2002; 166(4): 510–3

    Article  PubMed  Google Scholar 

  22. Tang YW, Johnson JE, Browning PJ, et al. Herpesvirus DNA is consistently detected in lungs of patients with idiopathic pulmonary fibrosis. J Clin Microbiol 2003; 41(6): 2633–40

    Article  PubMed  Google Scholar 

  23. Procop GW, Kohn DJ, Johnson JE, et al. BK and JC polyomaviruses are not associated with idiopathic pulmonary fibrosis. J Clin Microbiol 2005; 43(3): 1385–6

    Article  PubMed  CAS  Google Scholar 

  24. Baumgartner KB, Samet JM, Stidley CA, et al. Cigarette smoking: a risk factor for idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 1997; 155(1): 242–8

    PubMed  CAS  Google Scholar 

  25. Baumgartner KB, Samet JM, Coultas DB, et al. Occupational and environmental risk factors for idiopathic pulmonary fibrosis: a multicenter case-control study. Collaborating Centers Am J Epidemiol 2000; 152(4): 307–15

    Article  PubMed  CAS  Google Scholar 

  26. Lawson WE, Grant SW, Ambrosini V, et al. Genetic mutations in surfactant protein C are a rare cause of sporadic cases of IPF. Thorax 2004; 59(11): 977–80

    Article  PubMed  CAS  Google Scholar 

  27. Grutters JC, du Bois RM. Genetics of fibrosing lung diseases. Eur Respir J 2005; 25(5): 915–27

    Article  PubMed  CAS  Google Scholar 

  28. Whyte M, Hubbard R, Meliconi R, et al. Increased risk of fibrosing alveolitis associated with interleukin-1 receptor antagonist and tumor necrosis factor-alpha gene polymorphisms. Am J Respir Crit Care Med 2000; 162 (2 Pt 1): 755–8

    PubMed  CAS  Google Scholar 

  29. Pantelidis P, Fanning GC, Wells AU, et al. Analysis of tumor necrosis factor-alpha, lymphotoxin-alpha, tumor necrosis factor receptor II, and interleukin-6 polymorphisms in patients with idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 2001; 163(6): 1432–6

    PubMed  CAS  Google Scholar 

  30. Xaubet A, Marin-Arguedas A, Lario S, et al. Transforming growth factor-beta1 gene polymorphisms are associated with disease progression in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 2003; 168(4): 431–5

    Article  PubMed  Google Scholar 

  31. Katzenstein AL, Zisman DA, Litzky LA, et al. Usual interstitial pneumonia: histologic study of biopsy and expiant specimens. Am J Surg Pathol 2002; 26(12): 1567–77

    Article  PubMed  Google Scholar 

  32. Thannickal VJ, Toews GB, White ES, et al. Mechanisms of pulmonary fibrosis. Annu Rev Med 2004; 55: 395–417

    Article  PubMed  CAS  Google Scholar 

  33. Martinez FJ, Safrin S, Weycker D, et al. The clinical course of patients with idiopathic pulmonary fibrosis. Ann Intern Med 2005; 142 (12 Pt 1): 963–7

    PubMed  Google Scholar 

  34. Sutinen S, Rainio P, Huhti E, et al. Ultrastructure of terminal respiratory epithelium and prognosis in chronic interstitial pneumonia. Eur J Respir Dis 1980; 61(6): 325–36

    PubMed  CAS  Google Scholar 

  35. Kawanami O, Ferrans VJ, Crystal RG. Structure of alveolar epithelial cells in patients with fibrotic lung disorders. Lab Invest 1982; 46(1): 39–53

    PubMed  CAS  Google Scholar 

  36. Corrin B, Dewar A, Rodriguez-Roisin R, et al. Fine structural changes in cryptogenic fibrosing alveolitis and asbestosis. J Pathol 1985; 147(2): 107–19

    Article  PubMed  CAS  Google Scholar 

  37. Coalson JJ. The ultrastructure of human fibrosing alveolitis. Virchows Arch A Pathol Anat Histol 1982; 395(2): 181–99

    Article  PubMed  CAS  Google Scholar 

  38. Xu YD, Hua J, Mui A, et al. Release of biologically active TGF-beta1by alveolar epithelial cells results in pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol 2003; 285(3): L527–39

    PubMed  CAS  Google Scholar 

  39. Kuwano K, Kunitake R, Kawasaki M, et al. P21Wafl/Cipl/Sdil and p53 expression in association with DNA strand breaks in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 1996; 154 (2 Pt 1): 477–83

    PubMed  CAS  Google Scholar 

  40. Uhal BD, Joshi I, Hughes WF, et al. Alveolar epithelial cell death adjacent to underlying myofibroblasts in advanced fibrotic human lung. Am J Physiol 1998; 275 (6 Pt 1): L1192–9

    PubMed  CAS  Google Scholar 

  41. Barbas-Filho JV, Ferreira MA, Sesso A, et al. Evidence of type II pneumocyte apoptosis in the pathogenesis of idiopathic pulmonary fibrosis (IFP)usual interstitial pneumonia (UIP). J Clin Pathol 2001; 54(2): 132–8

    Article  PubMed  CAS  Google Scholar 

  42. Maeyama T, Kuwano K, Kawasaki M, et al. Upregulation of Fas-signalling molecules in lung epithelial cells from patients with idiopathic pulmonary fibrosis. Eur Respir J 2001; 17(2): 180–9

    Article  PubMed  CAS  Google Scholar 

  43. Plataki M, Koutsopoulos AV, Darivianaki K, et al. Expression of apoptotic and antiapoptotic markers in epithelial cells in idiopathic pulmonary fibrosis. Chest 2005; 127(1): 266–74

    Article  PubMed  Google Scholar 

  44. Wang R, Ibarra-Sunga O, Verlinski L, et al. Abrogation of bleomycin-induced epithelial apoptosis and lung fibrosis by captopril or by a caspase inhibitor. Am J Physiol Lung Cell Mol Physiol 2000; 279 (1): L143-51

    Google Scholar 

  45. Kuwano K, Kunitake R, MaeyamaI T, et al. Attenuation of bleomycin-induced pneumopathy in mice by a caspase inhibitor. Am J Physiol Lung Cell Mol Physiol 2001; 280(2): L316–25

    PubMed  CAS  Google Scholar 

  46. Blobe GC, Schiemann WP, Lodish HF. Role of transforming growth factor beta in human disease. N Engl J Med 2000; 342(18): 1350–8

    Article  PubMed  CAS  Google Scholar 

  47. Lee CG, Cho SJ, Kang MJ, et al. Early growth response gene 1-mediated apoptosis is essential for transforming growth factor beta1-induced pulmonary fibrosis. J Exp Med 2004; 200(3): 377–89

    Article  PubMed  CAS  Google Scholar 

  48. Cantin AM, North SL, Fells GA, et al. Oxidant-mediated epithelial cell injury in idiopathic pulmonary fibrosis. J Clin Invest 1987; 79(6): 1665–73

    Article  PubMed  CAS  Google Scholar 

  49. Thannickal VJ, Fanburg BL. Reactive oxygen species in cell signaling. Am J Physiol Lung Cell Mol Physiol 2000; 279(6): L1005–28

    PubMed  CAS  Google Scholar 

  50. Thannickal VJ, Fanburg BL. Activation of an H2O2-generating NADH oxidase in human lung fibroblasts by transforming growth factor beta 1. J Biol Chem 1995; 270(51): 30334–8

    Article  PubMed  CAS  Google Scholar 

  51. Thannickal VJ, Aldweib KD, Fanburg BL. Tyrosine phosphorylation regulates H2O2 production in lung fibroblasts stimulated by transforming growth factor beta 1. J Biol Chem 1998; 273(36): 23611–5

    Article  PubMed  CAS  Google Scholar 

  52. Waghray M, Cui Z, Horowitz JC, et al. Hydrogen peroxide is a diffusible paracrine signal for the induction of epithelial cell death by activated myofibroblasts. FASEB J 2005 May; 19(7): 854–6

    PubMed  CAS  Google Scholar 

  53. Hagimoto N, Kuwano K, Miyazaki H, et al. Induction of apoptosis and pulmonary fibrosis in mice in response to ligation of Fas antigen. Am J Respir Cell Mol Biol 1997; 17(3): 272–8

    PubMed  CAS  Google Scholar 

  54. Kuwano K, Hagimoto N, Kawasaki M, et al. Essential roles of the Fas-Fas ligand pathway in the development of pulmonary fibrosis. J Clin Invest 1999; 104(1): 13–9

    Article  PubMed  CAS  Google Scholar 

  55. Aoshiba K, Yasui S, Tamaoki J, et al. The Fas/Fas-ligand system is not required for bleomycin-induced pulmonary fibrosis in mice. Am J Respir Crit Care Med 2000; 162 (2 Pt 1): 695–700

    PubMed  CAS  Google Scholar 

  56. Uhal BD, Gidea C, Bargout R, et al. Captopril inhibits apoptosis in human lung epithelial cells: a potential antifibrotic mechanism. Am J Physiol 1998; 275 (5 Pt 1): L1013–7

    PubMed  CAS  Google Scholar 

  57. Wang R, Zagariya A, Ang E, et al. Fas-induced apoptosis of alveolar epithelial cells requires ANG II generation and receptor interaction. Am J Physiol 1999; 277 (6 Pt 1): L1245–50

    PubMed  CAS  Google Scholar 

  58. Papp M, Li X, Zhuang J, et al. Angiotensin receptor subtype AT (1) mediates alveolar epithelial cell apoptosis in response to ANG II. Am J Physiol Lung Cell Mol Physiol 2002; 282(4): L713–8

    PubMed  CAS  Google Scholar 

  59. Li X, Rayford H, Uhal BD. Essential roles for angiotensin receptor ATla in bleomycin-induced apoptosis and lung fibrosis in mice. Am J Pathol 2003; 163(6): 2523–30

    Article  PubMed  CAS  Google Scholar 

  60. Otsuka M, Takahashi H, Shiratori M, et al. Reduction of bleomycin induced lung fibrosis by candesartan cilexetil, an angiotensin II type 1 receptor antagonist. Thorax 2004; 59(1): 31–8

    Article  PubMed  CAS  Google Scholar 

  61. Shiratori M, Michalopoulos G, Shinozuka H, et al. Hepatocyte growth factor stimulates DNA synthesis in alveolar epithelial type II cells in vitro. Am J Respir Cell Mol Biol 1995; 12(2): 171–80

    PubMed  CAS  Google Scholar 

  62. Inoue T, Okada H, Kobayashi T, et al. Hepatocyte growth factor counteracts transforming growth factor-beta1, through attenuation of connective tissue growth factor induction, and prevents renal fibrogenesis in 5/6 nephrectomized mice. FASEB J 2003; 17(2): 268–70

    PubMed  CAS  Google Scholar 

  63. Lazar MH, Christensen PJ, Du M, et al. Plasminogen activator inhibitor-1 impairs alveolar epithelial repair by binding to vitronectin. Am J Respir Cell Mol Biol 2004; 31(6): 672–8

    Article  PubMed  CAS  Google Scholar 

  64. Mizuno S, Matsumoto K, Li MY, et al. HGF reduces advancing lung fibrosis in mice: a potential role for MMP-dependent myofibroblast apoptosis. FASEB J 2005; 19(6): 580–2

    PubMed  Google Scholar 

  65. Marchand-Adam S, Marchai J, Cohen M, et al. Defect of hepatocyte growth factor secretion by fibroblasts in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 2003; 168(10): 1156–61

    Article  Google Scholar 

  66. Dworkin LD, Gong R, Tolbert E, et al. Hepatocyte growth factor ameliorates progression of interstitial fibrosis in rats with established renal injury. Kidney Int 2004; 65(2): 409–19

    Article  PubMed  CAS  Google Scholar 

  67. Dohi M, Hasegawa T, Yamamoto K, et al. Hepatocyte growth factor attenuates collagen accumulation in a murine model of pulmonary fibrosis. Am J Respir Crit Care Med 2000; 162(6): 2302–7

    PubMed  CAS  Google Scholar 

  68. Taniyama Y, Morishita R, Nakagami H, et al. Potential contribution of a novel antifibrotic factor, hepatocyte growth factor, to prevention of myocardial fibrosis by angiotensin II blockade in cardiomyopathic hamsters. Circulation 2000; 102(2): 246–52

    Article  PubMed  CAS  Google Scholar 

  69. Nagahori T, Dohi M, Matsumoto K, et al. Interferon-gamma upregulates the c-Met/ hepatocyte growth factor receptor expression in alveolar epithelial cells. Am J Respir Cell Mol Biol 1999; 21(4): 490–7

    PubMed  CAS  Google Scholar 

  70. Rubin JS, Osada H, Finch PW, et al. Purification and characterization of a newly identified growth factor specific for epithelial cells. Proc Natl Acad Sci U S A 1989; 86(3): 802–6

    Article  PubMed  CAS  Google Scholar 

  71. Finch PW, Rubin JS, Miki T, et al. Human KGF is FGF-related with properties of a paracrine effector of epithelial cell growth. Science 1989; 245(4919): 752–5

    Article  PubMed  CAS  Google Scholar 

  72. Deterding RR, Jacoby CR, Shannon JM. Acidic fibroblast growth factor and keratinocyte growth factor stimulate fetal rat pulmonary epithelial growth. Am J Physiol 1996; 271 (4 Pt 1): L495–505

    PubMed  CAS  Google Scholar 

  73. Zhang F, Nielsen LD, Lucas JJ, et al. Transforming growth factor-beta antagonizes alveolar type II cell proliferation induced by keratinocyte growth factor. Am J Respir Cell Mol Biol 2004; 31(6): 679–86

    Article  PubMed  CAS  Google Scholar 

  74. Deterding RR, Havill AM, Yano T, et al. Prevention of bleomycin-induced lung injury in rats by keratinocyte growth factor. Proc Assoc Am Physicians 1997; 109(3): 254–68

    PubMed  CAS  Google Scholar 

  75. Marchand-Adam S, Plantier L, Bernuau D, et al. Keratinocyte growth factor expression by fibroblasts in pulmonary fibrosis: poor response to interleukin-1beta. Am J Respir Cell Mol Biol 2005; 32(5): 470–7

    Article  PubMed  CAS  Google Scholar 

  76. Christensen PJ, Bailie MB, Goodman RE, et al. Role of diminished epithelial GM-CSF in the pathogenesis of bleomycin-induced pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol 2000; 279(3): L487–95

    PubMed  CAS  Google Scholar 

  77. Eitzman DT, McCoy RD, Zheng X, et al. Bleomycin-induced pulmonary fibrosis in transgenic mice that either lack or overexpress the murine plasminogen activator inhibitor-1 gene. J Clin Invest 1996; 97(1): 232–7

    Article  PubMed  CAS  Google Scholar 

  78. Sisson TH, Hattori N, Xu Y, et al. Treatment of bleomycin-induced pulmonary fibrosis by transfer of urokinase-type plasminogen activator genes. Hum Gene Ther 1999; 10(14): 2315–23

    Article  PubMed  CAS  Google Scholar 

  79. Hattori N, Degen JL, Sisson TH, et al. Bleomycin-induced pulmonary fibrosis in fibrinogen-null mice. J Clin Invest 2000; 106(11): 1341–50

    Article  PubMed  CAS  Google Scholar 

  80. Sisson TH, Hanson KE, Subbotina N, et al. Inducible lung-specific urokinase expression reduces fibrosis and mortality after lung injury in mice. Am J Physiol Lung Cell Mol Physiol 2002; 283(5): L1023–32

    PubMed  CAS  Google Scholar 

  81. Chan JC, Duszczyszyn DA, Castellino FJ, et al. Accelerated skin wound healing in plasminogen activator inhibitor-1-deficient mice. Am J Pathol 2001; 159(5): 1681–8

    Article  PubMed  CAS  Google Scholar 

  82. Legrand C, Polette M, Tournier JM, et al. uPA/plasmin system-mediated MMP-9 activation is implicated in bronchial epithelial cell migration. Exp Cell Res 2001; 264(2): 326–36

    Article  PubMed  CAS  Google Scholar 

  83. Bitterman PB, Wewers MD, Rennard SI, et al. Modulation of alveolar macrophage-driven fibroblast proliferation by alternative macrophage mediators. J Clin Invest 1986; 77(3): 700–8

    Article  PubMed  CAS  Google Scholar 

  84. Lama V, Moore BB, Christensen P, et al. Prostaglandin E2 synthesis and suppression of fibroblast proliferation by alveolar epithelial cells is cyclooxygenase-2-dependent. Am J Respir Cell Mol Biol 2002; 27(6): 752–8

    PubMed  CAS  Google Scholar 

  85. White ES, Atrasz RG, Dickie EG, et al. Prostaglandin E (2) inhibits fibroblast migration by E-prostanoid 2 receptor-mediated increase in PTEN activity. Am J Respir Cell Mol Biol 2005; 32(2): 135–41

    Article  PubMed  CAS  Google Scholar 

  86. Kolodsick JE, Peters-Golden M, Larios J, et al. Prostaglandin E2 inhibits fibroblast to myofibroblast transition via E. prostanoid receptor 2 signaling and cyclic adenosine monophosphate elevation. Am J Respir Cell Mol Biol 2003; 29(5): 537–44

    Article  PubMed  CAS  Google Scholar 

  87. Goldstein RH, Polgar P. The effect and interaction of bradykinin and prostaglandins on protein and collagen production by lung fibroblasts. J Biol Chem 1982; 257(15): 8630–3

    PubMed  CAS  Google Scholar 

  88. Keerthisingam CB, Jenkins RG, Harrison NK, et al. Cyclooxygenase-2 deficiency results in a loss of the anti-proliferative response to transforming growth factor-beta in human fibrotic lung fibroblasts and promotes bleomycin-induced pulmonary fibrosis in mice. Am J Pathol 2001; 158(4): 1411–22

    Article  PubMed  CAS  Google Scholar 

  89. Peters-Golden M, Bailie M, Marshall T, et al. Protection from pulmonary fibrosis in leukotriene-deficient mice. Am J Respir Crit Care Med 2002; 165(2): 229–35

    PubMed  Google Scholar 

  90. Borok Z, Gillissen A, Buhl R, et al. Augmentation of functional prostaglandin E levels on the respiratory epithelial surface by aerosol administration of prostaglandin E. Am Rev Respir Dis 1991; 144(5): 1080–4

    Article  PubMed  CAS  Google Scholar 

  91. Wilborn J, Bailie M, Coffey M, et al. Constitutive activation of 5-lipoxygenase in the lungs of patients with idiopathic pulmonary fibrosis. J Clin Invest 1996; 97(8): 1827–36

    Article  PubMed  CAS  Google Scholar 

  92. Krause DS, Theise ND, Collector MI, et al. Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell. Cell 2001; 105(3): 369–77

    Article  PubMed  CAS  Google Scholar 

  93. Kotton DN, Ma BY, Cardoso WV, et al. Bone marrow-derived cells as progenitors of lung alveolar epithelium. Development 2001; 128(24): 5181–8

    PubMed  CAS  Google Scholar 

  94. Kotton DN, Fabian AJ, Mulligan RC. Failure of bone marrow to reconstitute lung epithelium. Am J Respir Cell Mol Biol 2005; 33(4): 328–34

    Article  PubMed  CAS  Google Scholar 

  95. Grove JE, Lutzko C, Priller J, et al. Marrow-derived cells as vehicles for delivery of gene therapy to pulmonary epithelium. Am J Respir Cell Mol Biol 2002; 27(6): 645–51

    PubMed  CAS  Google Scholar 

  96. Willis BC, Liebler JM, Luby-Phelps K, et al. Induction of epithelial-mesenchymal transition in alveolar epithelial cells by transforming growth factor-(beta)1: potential role in idiopathic pulmonary fibrosis. Am J Pathol 2005; 166(5): 1321–32

    Article  PubMed  CAS  Google Scholar 

  97. Desmouliere A, Chaponnier C, Gabbiani G. Tissue repair, contraction, and the myofibroblast. Wound Repair Regen 2005; 13(1): 7–12

    Article  PubMed  Google Scholar 

  98. Kuhn C, McDonald JA. The roles of the myofibroblast in idiopathic pulmonary fibrosis: ultrastructural and immunohistochemical features of sites of active extracellular matrix synthesis. Am J Pathol 1991; 138(5): 1257–65

    PubMed  CAS  Google Scholar 

  99. Singer AJ, Clark RA. Cutaneous wound healing. N Engl J Med 1999; 341(10): 738–46

    Article  PubMed  CAS  Google Scholar 

  100. Tomasek JJ, Gabbiani G, Hinz B, et al. Myofibroblasts and mechano-regulation of connective tissue remodelling. Nat Rev Mol Cell Biol 2002; 3(5): 349–63

    Article  PubMed  CAS  Google Scholar 

  101. Gabbiani G. The myofibroblast in wound healing and fibrocontractive diseases. J Pathol 2003; 200(4): 500–3

    Article  PubMed  CAS  Google Scholar 

  102. Phan SH. The myofibroblast in pulmonary fibrosis. Chest 2002; 122 (6 Suppl.): 286S–9S

    Article  PubMed  Google Scholar 

  103. Phillips RJ, Burdick MD, Hong K, et al. Circulating fibrocytes traffic to the lungs in response to CXCL12 and mediate fibrosis. J Clin Invest 2004; 114(3): 438–46

    PubMed  CAS  Google Scholar 

  104. Moore BB, Kolodsick JE, Thannickal VJ, et al. CCR2-mediated recruitment of fibrocytes to the alveolar space after fibrotic injury. Am J Pathol 2005; 166(3): 675–84

    Article  PubMed  CAS  Google Scholar 

  105. Hashimoto N, Jin H, Liu T, et al. Bone marrow-derived progenitor cells in pulmonary fibrosis. J Clin Invest 2004; 113(2): 243–52

    PubMed  CAS  Google Scholar 

  106. Yao HW, Xie QM, Chen JQ, et al. TGF-beta1 induces alveolar epithelial to mesenchymal transition in vitro. Life Sci 2004; 76(1): 29–37

    Article  PubMed  CAS  Google Scholar 

  107. Kasai H, Allen JT, Mason RM, et al. TGF-beta1induces human alveolar epithelial to mesenchymal cell transition (EMT). Respir Res 2005; 6(1): 56

    Article  PubMed  CAS  Google Scholar 

  108. Desmouliere A, Redard M, Darby I, et al. Apoptosis mediates the decrease in cellularity during the transition between granulation tissue and scar. Am J Pathol 1995; 146(1): 56–66

    PubMed  CAS  Google Scholar 

  109. Border WA, Noble NA. Transforming growth factor beta in tissue fibrosis. N Engl J Med 1994; 331(19): 1286–92

    Article  PubMed  CAS  Google Scholar 

  110. Chapman HA. Disorders of lung matrix remodeling. J Clin Invest 2004; 113(2): 148–57

    PubMed  CAS  Google Scholar 

  111. Sime PJ, Xing Z, Graham FL, et al. Adenovector-mediated gene transfer of active transforming growth factor-beta1 induces prolonged severe fibrosis in rat lung. J Clin Invest 1997; 100(4): 768–76

    Article  PubMed  CAS  Google Scholar 

  112. Kolb M, Bonniaud P, Galt T, et al. Differences in the fibrogenic response after transfer of active transforming growth factor-beta1 gene to lungs of ‘fibrosis-prone’ and ‘fibrosis-resistant’ mouse strains. Am J Respir Cell Mol Biol 2002; 27(2): 141–50

    PubMed  CAS  Google Scholar 

  113. Kolb M, Margetts PJ, Galt T, et al. Transient transgene expression of decorin in the lung reduces the fibrotic response to bleomycin. Am J Respir Crit Care Med 2001; 163 (3 Pt 1): 770–7

    PubMed  CAS  Google Scholar 

  114. Horowitz JC, Lee DY, Waghray M, et al. Activation of the pro-survival phosphatidylinositol 3-kinase/AKT pathway by transforming growth factor-beta1 in mesenchymal cells is mediated by p38 MAPK-dependent induction of an autocrine growth factor. J Biol Chem 2004; 279(2): 1359–67

    Article  PubMed  CAS  Google Scholar 

  115. Zhang HY, Phan SH. Inhibition of myofibroblast apoptosis by transforming growth factor beta (1). Am J Respir Cell Mol Biol 1999; 21(6): 658–65

    PubMed  CAS  Google Scholar 

  116. Sun G, Stacey MA, Bellini A, et al. Endothelin-1 induces bronchial myofibroblast differentiation. Peptides 1997; 18(9): 1449–51

    Article  PubMed  CAS  Google Scholar 

  117. Bogatkevich GS, Tourkina E, Silver RM, et al. Thrombin differentiates normal lung fibroblasts to a myofibroblast phenotype via the proteolytically activated receptor-1 and a protein kinase C-dependent pathway. J Biol Chem 2001; 276(48): 45184–92

    Article  PubMed  CAS  Google Scholar 

  118. Morishima Y, Nomura A, Uchida Y, et al. Triggering the induction of myofibroblast and fibrogenesis by airway epithelial shedding. Am J Respir Cell Mol Biol 2001; 24(1): 1–11

    PubMed  CAS  Google Scholar 

  119. Marshall RP, McAnulty RJ, Laurent GJ. Angiotensin II is mitogenic for human lung fibroblasts via activation of the type 1 receptor. Am J Respir Crit Care Med 2000; 161(6): 1999–2004

    PubMed  CAS  Google Scholar 

  120. Nguyen L, Ward WF, Ts’ao CH, et al. Captopril inhibits proliferation of human lung fibroblasts in culture: a potential antifibrotic mechanism. Proc Soc Exp Biol Med 1994; 205(1): 80–4

    PubMed  CAS  Google Scholar 

  121. Ketteler M, Noble NA, Border WA. Transforming growth factor-beta and angiotensin II: the missing link from glomerular hyperfiltration to glomerulosclerosis? Annu Rev Physiol 1995; 57: 279–95

    Article  PubMed  CAS  Google Scholar 

  122. Campbell SE, Katwa LC. Angiotensin II stimulated expression of transforming growth factor-beta1 in cardiac fibroblasts and myofibroblasts. J Mol Cell Cardiol 1997; 29(7): 1947–58

    Article  PubMed  CAS  Google Scholar 

  123. Serini G, Bochaton-Piallat ML, Ropraz P, et al. The fibronectin domain ED-A is crucial for myofibroblastic phenotype induction by transforming growth factor-beta 1. J Cell Biol 1998; 142(3): 873–81

    Article  PubMed  CAS  Google Scholar 

  124. Hinz B, Mastrangelo D, Iselin CE, et al. Mechanical tension controls granulation tissue contractile activity and myofibroblast differentiation. Am J Pathol 2001; 159(3): 1009–20

    Article  PubMed  CAS  Google Scholar 

  125. Arora PD, Narani N, McCulloch CA. The compliance of collagen gels regulates transforming growth factor-beta induction of alpha-smooth muscle actin in fibroblasts. Am J Pathol 1999; 154(3): 871–82

    Article  PubMed  CAS  Google Scholar 

  126. Zhu YK, Umino T, Liu XD, et al. Contraction of fibroblast-containing collagen gels: initial collagen concentration regulates the degree of contraction and cell survival. In Vitro Cell Dev Biol Anim 2001; 37(1): 10–6

    Article  PubMed  CAS  Google Scholar 

  127. Thannickal VJ, Lee DY, White ES, et al. Myofibroblast differentiation by transforming growth factor-beta1 is dependent on cell adhesion and integrin signaling via focal adhesion kinase. J Biol Chem 2003; 278(14): 12384–9

    Article  PubMed  CAS  Google Scholar 

  128. Uhal BD, Joshi I, True AL, et al. Fibroblasts isolated after fibrotic lung injury induce apoptosis of alveolar epithelial cells in vitro. Am J Physiol 1995; 269 (6 Pt 1): L819–28

    PubMed  CAS  Google Scholar 

  129. Larios JM, Budhiraja R, Fanburg BL, et al. Oxidative protein cross-linking reactions involving L-tyrosine in transforming growth factor-beta1-stimulated fibroblasts. J Biol Chem 2001; 276(20): 17437–41

    Article  PubMed  CAS  Google Scholar 

  130. Phan SH, Zhang K, Zhang HY, et al. The myofibroblast as an inflammatory cell in pulmonary fibrosis. Curr Top Pathol 1999; 93: 173–82

    Article  PubMed  CAS  Google Scholar 

  131. Strieter RM, Wiggins R, Phan SH, et al. Monocyte chemotactic protein gene expression by cytokine-treated human fibroblasts and endothelial cells. Biochem Biophys Res Commun 1989; 162(2): 694–700

    Article  PubMed  CAS  Google Scholar 

  132. Rolfe MW, Kunkel SL, Standiford TJ, et al. Pulmonary fibroblast expression of interleukin-8: a model for alveolar macrophage-derived cytokine networking. Am J Respir Cell Mol Biol 1991; 5(5): 493–501

    PubMed  CAS  Google Scholar 

  133. Strieter RM. Pathogenesis and natural history of usual interstitial pneumonia: the whole story or the last chapter of a long novel. Chest 2005; 128 (5 Suppl. 1): 526S–32S

    Article  PubMed  Google Scholar 

  134. Crystal RG, Fulmer JD, Roberts WC, et al. Idiopathic pulmonary fibrosis: clinical, histologic, radiographic, physiologic, scintigraphic, cytologie, and biochemical aspects. Ann Intern Med 1976; 85(6): 769–88

    PubMed  CAS  Google Scholar 

  135. Mason RJ, Schwarz MI, Hunninghake W, et al. NHLBI Workshop Summary. Pharmacological therapy for idiopathic pulmonary fibrosis: past, present, and future. Am J Respir Crit Care Med 1999; 160 (5 Pt 1): 1771–7

    PubMed  CAS  Google Scholar 

  136. Selman M, King TE, Pardo A. Idiopathic pulmonary fibrosis: prevailing and evolving hypotheses about its pathogenesis and implications for therapy. Ann Intern Med 2001; 134(2): 136–51

    PubMed  CAS  Google Scholar 

  137. Gross TJ, Hunninghake GW. Idiopathic pulmonary fibrosis. N Engl J Med 2001; 345(7): 517–25

    Article  PubMed  CAS  Google Scholar 

  138. Zuo F, Kaminski N, Eugui E, et al. Gene expression analysis reveals matrilysin as a key regulator of pulmonary fibrosis in mice and humans. Proc Natl Acad Sci U S A 2002; 99(9): 6292–7

    Article  PubMed  CAS  Google Scholar 

  139. Agostini C, Siviero M, Semenzato G. Immune effector cells in idiopathic pulmonary fibrosis. Curr Opin Pulm Med 1997; 3(5): 348–55

    Article  PubMed  CAS  Google Scholar 

  140. Kelly M, Kolb M, Bonniaud P, et al. Re-evaluation of fibrogenic cytokines in lung fibrosis. Curr Pharm Des 2003; 9(1): 39–49

    Article  PubMed  CAS  Google Scholar 

  141. Lukacs NW, Hogaboam C, Chensue W, et al. Type I/type 2 cytokine paradigm and the progression of pulmonary fibrosis. Chest 2001; 120 (1 Suppl.): 5S–8S

    Article  PubMed  CAS  Google Scholar 

  142. Wynn TA. Fibrotic disease and the T (H)1/T (H)2 paradigm. Nat Rev Immunol 2004; 4(8): 583–94

    Article  PubMed  CAS  Google Scholar 

  143. Jakubzick C, Choi ES, Joshi BH, et al. Therapeutic attenuation of pulmonary fibrosis via targeting of IL-4- and IL-13-responsive cells. J Immunol 2003; 171(5): 2684–93

    PubMed  CAS  Google Scholar 

  144. Cavarra E, Carraro F, Fineschi S, et al. Early response to bleomycin is characterized by different cytokine and cytokine receptor profiles in lungs. Am J Physiol Lung Cell Mol Physiol 2004; 287(6): L1186–92

    Article  PubMed  CAS  Google Scholar 

  145. Chua F, Gauldie J, Laurent GJ. Pulmonary fibrosis: searching for model answers. Am J Respir Cell Mol Biol 2005; 33(1): 9–13

    Article  PubMed  CAS  Google Scholar 

  146. Helene M, Lake-Bullock V, Zhu J, et al. T cell independence of bleomycin-induced pulmonary fibrosis. J Leukoc Biol 1999; 65(2): 187–95

    PubMed  CAS  Google Scholar 

  147. Okazaki T, Nakao A, Nakano H, et al. Impairment of bleomycin-induced lung fibrosis in CD28-deficient mice. J Immunol 2001; 167(4): 1977–81

    PubMed  CAS  Google Scholar 

  148. Jakubzick C, Choi ES, Kunkel SL, et al. Augmented pulmonary IL-4 and IL-13 receptor subunit expression in idiopathic interstitial pneumonia. J Clin Pathol 2004; 57(5): 477–86

    Article  PubMed  CAS  Google Scholar 

  149. Jakubzick C, Choi ES, Carpenter KJ, et al. Human pulmonary fibroblasts exhibit altered interleukin-4 and interleukin-13 receptor subunit expression in idiopathic interstitial pneumonia. Am J Pathol 2004; 164(6): 1989–2001

    Article  PubMed  CAS  Google Scholar 

  150. Peao MN, Aguas AP, de Sa CM, et al. Neoformation of blood vessels in association with rat lung fibrosis induced by bleomycin. Anat Rec 1994; 238(1): 57–67

    Article  PubMed  CAS  Google Scholar 

  151. Turner-Warwick M. Precapillary systemic-pulmonary anastomoses. Thorax 1963; 18: 225–37

    Article  PubMed  CAS  Google Scholar 

  152. Simler NR, Brenchley PE, Horrocks AW, et al. Angiogenic cytokines in patients with idiopathic interstitial pneumonia. Thorax 2004; 59(7): 581–5

    Article  PubMed  CAS  Google Scholar 

  153. Keane MP, Arenberg DA, Lynch III JP, et al. The CXC chemokines, IL-8 and IP-10, regulate angiogenic activity in idiopathic pulmonary fibrosis. J Immunol 1997; 159(3): 1437–43

    PubMed  CAS  Google Scholar 

  154. Keane MP, Belperio JA, Burdick MD, et al. ENA-78 is an important angiogenic factor in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 2001; 164(12): 2239–42

    PubMed  CAS  Google Scholar 

  155. Keane MP, Belperio JA, Arenberg DA, et al. IFN-gamma-inducible protein-10 attenuates bleomycin-induced pulmonary fibrosis via inhibition of angiogenesis. J Immunol 1999; 163(10): 5686–92

    PubMed  CAS  Google Scholar 

  156. Keane MP, Belperio JA, Burdick MD, et al. IL-12 attenuates bleomycin-induced pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol 2001; 281(1): L92–7

    PubMed  CAS  Google Scholar 

  157. Burdick MD, Murray LA, Keane MP, et al. CXCL11 attenuates bleomycin-induced pulmonary fibrosis via inhibition of vascular remodeling. Am J Respir Crit Care Med 2005; 171(3): 261–8

    Article  PubMed  Google Scholar 

  158. Tager AM, Kradin RL, LaCamera P, et al. Inhibition of pulmonary fibrosis by the chemokine IP-10/CXCL 10. Am J Respir Cell Mol Biol 2004; 31(4): 395–404

    Article  PubMed  CAS  Google Scholar 

  159. Renzoni EA, Walsh DA, Salmon M, et al. Interstitial vascularity in fibrosing alveolitis. Am J Respir Crit Care Med 2003; 167(3): 438–43

    Article  PubMed  Google Scholar 

  160. Cosgrove GP, Brown KK, Schiemann WP, et al. Pigment epithelium-derived factor in idiopathic pulmonary fibrosis: a role in aberrant angiogenesis. Am J Respir Crit Care Med 2004; 170(3): 242–51

    Article  PubMed  Google Scholar 

  161. Sumi M, Satoh H, Kagohashi K, et al. Increased serum levels of endostatin in patients with idiopathic pulmonary fibrosis. J Clin Lab Anal 2005; 19(4): 146–9

    Article  PubMed  CAS  Google Scholar 

  162. Beer TW, Baldwin HC, Goddard JR, et al. Angiogenesis in pathological and surgical scars. Hum Pathol 1998; 29(11): 1273–8

    Article  PubMed  CAS  Google Scholar 

  163. Weitzenblum E, Ehrhart M, Rasaholinjanahary J, et al. Pulmonary hemodynamics in idiopathic pulmonary fibrosis and other interstitial pulmonary diseases. Respiration 1983; 44(2): 118–27

    Article  PubMed  CAS  Google Scholar 

  164. Agusti AG, Roca J, Gea J, et al. Mechanisms of gas-exchange impairment in idiopathic pulmonary fibrosis. Am Rev Respir Dis 1991; 143(2): 219–25

    PubMed  CAS  Google Scholar 

  165. Parambil JG, Myers JL, Ryu JH. Histopathologic features and outcome of patients with acute exacerbation of idiopathic pulmonary fibrosis undergoing surgical lung biopsy. Chest 2005; 128(5): 3310–5

    Article  PubMed  Google Scholar 

  166. Olschewski H, Simonneau G, Galie N, et al. Inhaled iloprost for severe pulmonary hypertension. N Engl J Med 2002; 347(5): 322–9

    Article  PubMed  CAS  Google Scholar 

  167. Ghofrani HA, Wiedemann R, Rose F, et al. Sildenafil for treatment of lung fibrosis and pulmonary hypertension: a randomised controlled trial. Lancet 2002; 360(9337): 895–900

    Article  PubMed  CAS  Google Scholar 

  168. CoTherix. Inhaled iloprost in adults with abnormal pulmonary pressure and associated with idiopathic pulmonary fibrosis [online]. Available from URL: http://www.clinicaltrials.gov/ct/gui/show/NCTOO109681. [Accessed 2006 Jul 12]

  169. Douglas WW, Ryu JH, Schroeder DR. Idiopathic pulmonary fibrosis: impact of oxygen and colchicine, prednisone, or no therapy on survival. Am J Respir Crit Care Med 2000; 161 (4 Pt 1): 1172–8

    PubMed  CAS  Google Scholar 

  170. Lynch III JP, White E, Flaherty K. Corticosteroids in idiopathic pulmonary fibrosis. Curr Opin Pulm Med 2001; 7(5): 298–308

    Article  PubMed  Google Scholar 

  171. Ryu JH, Myers JL, Capizzi SA, et al. Desquamative interstitial pneumonia and respiratory bronchiolitis-associated interstitial lung disease. Chest 2005; 127(1): 178–84

    Article  PubMed  Google Scholar 

  172. Deheinzelin D, Capelozzi VL, Kairalla RA, et al. Interstitial lung disease in primary Sjogren’s syndrome: clinical-pathological evaluation and response to treatment. Am J Respir Crit Care Med 1996; 154 (3 Pt 1): 794–9

    PubMed  CAS  Google Scholar 

  173. Nicholson AG, Colby TV, du Bois RM, et al. The prognostic significance of the histologic pattern of interstitial pneumonia in patients presenting with the clinical entity of cryptogenic fibrosing alveolitis. Am J Respir Crit Care Med 2000; 162(6): 2213–7

    PubMed  CAS  Google Scholar 

  174. Bouros D, Wells AU, Nicholson AG, et al. Histopathologic subsets of fibrosing alveolitis in patients with systemic sclerosis and their relationship to outcome. Am J Respir Crit Care Med 2002; 165(12): 1581–6

    Article  PubMed  Google Scholar 

  175. Dheda K, Lalloo UG, Cassim B, et al. Experience with azathioprine in systemic sclerosis associated with interstitial lung disease. Clin Rheumatol 2004; 23(4): 306–9

    Article  PubMed  CAS  Google Scholar 

  176. Clark JG, Dedon TF, Wayner EA, et al. Effects of interferon-gamma on expression of cell surface receptors for collagen and deposition of newly synthesized collagen by cultured human lung fibroblasts. J Clin Invest 1989; 83(5): 1505–11

    Article  PubMed  CAS  Google Scholar 

  177. Narayanan AS, Whithey J, Souza A, et al. Effect of gamma-interferon on collagen synthesis by normal and fibrotic human lung fibroblasts. Chest 1992; 101(5): 1326–31

    Article  PubMed  CAS  Google Scholar 

  178. Jaffe HA, Gao Z, Mori Y, et al. Selective inhibition of collagen gene expression in fibroblasts by an interferon-gamma transgene. Exp Lung Res 1999; 25(3): 199–215

    Article  PubMed  CAS  Google Scholar 

  179. Adelmann-Grill BC, Hein R, Wach F, et al. Inhibition of fibroblast chemotaxis by recombinant human interferon gamma and interferon alpha. J Cell Physiol 1987; 130(2): 270–5

    Article  PubMed  CAS  Google Scholar 

  180. Strieter RM, Belperio JA, Keane MP. CXC chemokines in vascular remodeling related to pulmonary fibrosis. Am J Respir Cell Mol Biol 2003; 29 (3 Suppl.): S67–9

    PubMed  CAS  Google Scholar 

  181. Hunninghake GW, Hemken C, Brady M, et al. Immune interferon is a growth factor for human lung fibroblasts. Am Rev Respir Dis 1986; 134(5): 1025–8

    PubMed  CAS  Google Scholar 

  182. Elias JA, Jimenez SA, Freundlich B. Recombinant gamma, alpha, and beta interferon regulation of human lung fibroblast proliferation. Am Rev Respir Dis 1987; 135(1): 62–5

    PubMed  CAS  Google Scholar 

  183. Moseley PL, Hemken C, Monick M, et al. Interferon and growth factor activity for human lung fibroblasts: release from bronchoalveolar cells from patients with active sarcoidosis. Chest 1986; 89(5): 657–62

    Article  PubMed  CAS  Google Scholar 

  184. Hasegawa T, Nakao A, Sumiyoshi K, et al. IFN-gamma fails to antagonize fibrotic effect of TGF-beta on keloid-derived dermal fibroblasts. J Dermatol Sci 2003; 32(1): 19–24

    Article  PubMed  CAS  Google Scholar 

  185. Oldroyd SD, Thomas GL, Gabbiani G, et al. Interferon-gamma inhibits experimental renal fibrosis. Kidney Int 1999; 56(6): 2116–27

    Article  PubMed  CAS  Google Scholar 

  186. Gurujeyalakshmi G, Giri SN. Molecular mechanisms of antifibrotic effect of interferon gamma in bleomycin-mouse model of lung fibrosis: downregulation of TGF-beta and procollagen I and III gene expression. Exp Lung Res 1995; 21(5): 791–808

    Article  PubMed  CAS  Google Scholar 

  187. Weng HL, Cai WM, Liu RH. Animal experiment and clinical study of effect of gamma-interferon on hepatic fibrosis. World J Gastroenterol 2001; 7(1): 42–8

    PubMed  CAS  Google Scholar 

  188. Ziesche R, Hofbauer E, Wittmann K, et al. A preliminary study of long-term treatment with interferon gamma-1b and low-dose prednisolone in patients with idiopathic pulmonary fibrosis. N Engl J Med 1999; 341(17): 1264–9

    Article  PubMed  CAS  Google Scholar 

  189. Raghu G, Brown KK, Bradford WZ, et al. A placebo-controlled trial of interferon gamma-1b in patients with idiopathic pulmonary fibrosis. N Engl J Med 2004; 350(2): 125–33

    Article  PubMed  CAS  Google Scholar 

  190. InterMune Inc. INSPIRE: international study of survival outcomes in idiopathic pulmonary fibrosis (IPF) with interferon gamma-1b (IFN-γ1b) — early intervention [online]. Available from URL: http://www.inspiretrial.com [Accessed 2006 Jul 12]

  191. Nicod LP. Pirfenidone in idiopathic pulmonary fibrosis. Lancet 1999; 354(9175): 268–9

    Article  PubMed  CAS  Google Scholar 

  192. Shihab FS, Bennett WM, Yi H, et al. Pirfenidone treatment decreases transforming growth factor-beta1 and matrix proteins and ameliorates fibrosis in chronic cyclosporine nephrotoxicity. Am J Transplant 2002; 2(2): 111–9

    Article  PubMed  CAS  Google Scholar 

  193. Iyer SN, Gurujeyalakshmi G, Giri SN. Effects of pirfenidone on procollagen gene expression at the transcriptional level in bleomycin hamster model of lung fibrosis. J Pharmacol Exp Ther 1999; 289(1): 211–8

    PubMed  CAS  Google Scholar 

  194. Kakugawa T, Mukae H, Hayashi T, et al. Pirfenidone attenuates expression of HSP47 in murine bleomycin-induced pulmonary fibrosis. Eur Respir J 2004; 24(1): 57–65

    Article  PubMed  CAS  Google Scholar 

  195. Giri SN, Leonard S, Shi X, et al. Effects of pirfenidone on the generation of reactive oxygen species in vitro. J Environ Pathol Toxicol Oncol 1999; 18(3): 169–77

    PubMed  CAS  Google Scholar 

  196. Misra HP, Rabideau C. Pirfenidone inhibits NADPH-dependent microsomal lipid peroxidation and scavenges hydroxyl radicals. Mol Cell Biochem 2000; 204(1-2): 119–26

    Article  PubMed  CAS  Google Scholar 

  197. Garcia L, Hernandez I, Sandoval A, et al. Pirfenidone effectively reverses experimental liver fibrosis. J Hepatol 2002; 37(6): 797–805

    Article  PubMed  CAS  Google Scholar 

  198. Suga H, Teraoka S, Ota K, et al. Preventive effect of pirfenidone against experimental sclerosing peritonitis in rats. Exp Toxicol Pathol 1995; 47(4): 287–91

    Article  PubMed  CAS  Google Scholar 

  199. Shimizu T, Fukagawa M, Kuroda T, et al. Pirfenidone prevents collagen accumulation in the remnant kidney in rats with partial nephrectomy. Kidney Int Suppl 1997; 63: S239–43

    CAS  Google Scholar 

  200. Angulo P, MacCarty RL, Sylvestre PB, et al. Pirfenidone in the treatment of primary sclerosing cholangitis. Dig Dis Sci 2002; 47(1): 157–61

    Article  PubMed  CAS  Google Scholar 

  201. Iyer SN, Margolin SB, Hyde DM, et al. Lung fibrosis is ameliorated by pirfenidone fed in diet after the second dose in a three-dose bleomycin-hamster model. Exp Lung Res 1998; 24(1): 119–32

    Article  PubMed  CAS  Google Scholar 

  202. Kehrer JP, Margolin SB. Pirfenidone diminishes cyclophosphamide-induced lung fibrosis in mice. Toxicol Lett 1997; 90(2-3): 125–32

    Article  PubMed  CAS  Google Scholar 

  203. Raghu G, Johnson WC, Lockhart D, et al. Treatment of idiopathic pulmonary fibrosis with a new antifibrotic agent, pirfenidone: results of a prospective, open-label Phase II study. Am J Respir Crit Care Med 1999; 159 (4 Pt 1): 1061–9

    PubMed  CAS  Google Scholar 

  204. Gahl WA, Brantly M, Troendle J, et al. Effect of pirfenidone on the pulmonary fibrosis of Hermansky-Pudlak syndrome. Mol Genet Metab 2002; 76(3): 234–42

    Article  PubMed  CAS  Google Scholar 

  205. Azuma A, Nukiwa T, Tsuboi E, et al. Double-blind, placebo-controlled trial of pirfenidone in patients with idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 2005; 171(9): 1040–7

    Article  PubMed  Google Scholar 

  206. Charbeneau RP, Peters-Golden M. Eicosanoids: mediators and therapeutic targets in fibrotic lung disease. Clin Sci (Lond) 2005; 108(6): 479–91

    Article  CAS  Google Scholar 

  207. Mio T, Nagai S, Kitaichi M, et al. Proliferative characteristics of fibroblast lines derived from open lung biopsy specimens of patients with IPF (UIP). Chest 1992; 102(3): 832–7

    Article  PubMed  CAS  Google Scholar 

  208. Moore BB, Peters-Golden M, Christensen PJ, et al. Alveolar epithelial cell inhibition of fibroblast proliferation is regulated by MCP-1/CCR2 and mediated by PGE 2. Am J Physiol Lung Cell Mol Physiol 2003; 284(2): L342–9

    PubMed  CAS  Google Scholar 

  209. Moore BB, Paine III R, Christensen PJ, et al. Protection from pulmonary fibrosis in the absence of CCR2 signaling. J Immunol 2001; 167(8): 4368–77

    PubMed  CAS  Google Scholar 

  210. Moore BB, Coffey MJ, Christensen P, et al. GM-CSF regulates bleomycin-induced pulmonary fibrosis via a prostaglandin-dependent mechanism. J Immunol 2000; 165(7): 4032–9

    PubMed  CAS  Google Scholar 

  211. US National Institutes of Health. Zileuton for the treatment of idiopathic pulmonary fibrosis [online]. Available from URL: http://www.clinicaltrials.gov/at/gui/show/NCT00262405 [Accessed 2006 Jul 12]

  212. Zhang Y, Lee TC, Guillemin B, et al. Enhanced IL-1 beta and tumor necrosis factor-alpha release and messenger RNA expression in macrophages from idiopathic pulmonary fibrosis or after asbestos exposure. J Immunol 1993; 150(9): 4188–96

    PubMed  CAS  Google Scholar 

  213. Piguet PF, Ribaux C, Karpuz V, et al. Expression and localization of tumor necrosis factor-alpha and its mRNA in idiopathic pulmonary fibrosis. Am J Pathol 1993; 143(3): 651–5

    PubMed  CAS  Google Scholar 

  214. Libura J, Bettens F, Radkowski A, et al. Risk of chemotherapy-induced pulmonary fibrosis is associated with polymorphic tumour necrosis factor-a2 gene. Eur Respir J 2002; 19(5): 912–8

    Article  PubMed  CAS  Google Scholar 

  215. Riha RL, Yang IA, Rabnott GC, et al. Cytokine gene polymorphisms in idiopathic pulmonary fibrosis. Intern Med J 2004; 34(3): 126–9

    Article  PubMed  CAS  Google Scholar 

  216. Miyazaki Y, Araki K, Vesin C, et al. Expression of a tumor necrosis factor-alpha transgene in murine lung causes lymphocytic and fibrosing alveolitis: a mouse model of progressive pulmonary fibrosis. J Clin Invest 1995; 96(1): 250–9

    Article  PubMed  CAS  Google Scholar 

  217. Sime PJ, Marr RA, Gauldie D, et al. Transfer of tumor necrosis factor-alpha to rat lung induces severe pulmonary inflammation and patchy interstitial fibrogenesis with induction of transforming growth factor-beta1 and myofibroblasts. Am J Pathol 1998; 153(3): 825–32

    Article  PubMed  CAS  Google Scholar 

  218. Ortiz LA, Lasky J, Hamilton Jr RF, et al. Expression of TNF and the necessity of TNF receptors in bleomycin-induced lung injury in mice. Exp Lung Res 1998; 24(6): 721–43

    Article  PubMed  CAS  Google Scholar 

  219. Piguet PF, Vesin C. Treatment by human recombinant soluble TNF receptor of pulmonary fibrosis induced by bleomycin or silica in mice. Eur Respir J 1994; 7(3): 515–8

    Article  PubMed  CAS  Google Scholar 

  220. Siwik DA, Chang DL, Colucci WS. Interleukin-1beta and tumor necrosis factor-alpha decrease collagen synthesis and increase matrix metalloproteinase activity in cardiac fibroblasts in vitro. Circ Res 2000; 86(12): 1259–65

    Article  PubMed  CAS  Google Scholar 

  221. Solis-Herruzo JA, Brenner DA, Chojkier M. Tumor necrosis factor alpha inhibits collagen gene transcription and collagen synthesis in cultured human fibroblasts. J Biol Chem 1988; 263(12): 5841–5

    PubMed  CAS  Google Scholar 

  222. Kahari VM, Chen YQ, Su MW, et al. Tumor necrosis factor-alpha and interferongamma suppress the activation of human type I collagen gene expression by transforming growth factor-beta 1: evidence for two distinct mechanisms of inhibition at the transcriptional and posttranscriptional levels. J Clin Invest 1990; 86(5): 1489–95

    Article  PubMed  CAS  Google Scholar 

  223. Greenwel P, Tanaka S, Penkov D, et al. Tumor necrosis factor alpha inhibits type I collagen synthesis through repressive CCAAT/enhancer-binding proteins. Mol Cell Biol 2000; 20(3): 912–8

    Article  PubMed  CAS  Google Scholar 

  224. Han YP, Tuan TL, Hughes M, et al. Transforming growth factor-beta- and tumor necrosis factor-alpha-mediated induction and proteolytic activation of MMP-9 in human skin. J Biol Chem 2001; 276(25): 22341–50

    Article  PubMed  CAS  Google Scholar 

  225. Han YP, Tuan TL, Wu H, et al. TNF-alpha stimulates activation of pro-MMP2 in human skin through NF-(kappa)B mediated induction of MT1 -MMP. J Cell Sci 2001; 114 (Pt 1): 131–9

    PubMed  CAS  Google Scholar 

  226. Kuroki M, Noguchi Y, Shimono M, et al. Repression of bleomycin-induced pneumopathy by TNF. J Immunol 2003; 170(1): 567–74

    PubMed  CAS  Google Scholar 

  227. Fujita M, Shannon JM, Morikawa O, et al. Overexpression of tumor necrosis factor-alpha diminishes pulmonary fibrosis induced by bleomycin or transforming growth factor-beta. Am J Respir Cell Mol Biol 2003; 29(6): 669–76

    Article  PubMed  CAS  Google Scholar 

  228. Raghu G, Lasky JA, Costabel U, et al. A randomized placebo controlled trial assessing the efficacy and safety of etanercept in patients with idiopathic pulmonary fibrosis (IPF). Chest 2005; 128(4): 496S-a

    Google Scholar 

  229. Kinnula VL, Fattman CL, Tan RJ, et al. Oxidative stress in pulmonary fibrosis: a possible role for redox modulatory therapy. Am J Respir Crit Care Med 2005; 172(4): 417–22

    Article  PubMed  Google Scholar 

  230. Cantin AM, Hubbard RC, Crystal RG. Glutathione deficiency in the epithelial lining fluid of the lower respiratory tract in idiopathic pulmonary fibrosis. Am Rev Respir Dis 1989; 139(2): 370–2

    Article  PubMed  CAS  Google Scholar 

  231. Smilkstein MJ, Bronstein AC, Linden C, et al. Acetaminophen overdose: a 48-hour intravenous N-acetylcysteine treatment protocol. Ann Emerg Med 1991; 20(10): 1058–63

    Article  PubMed  CAS  Google Scholar 

  232. Tepel M, van der Giet M, Schwarzfeld C, et al. Prevention of radiographic-contrast-agent-induced reductions in renal function by acetylcysteine. N Engl J Med 2000; 343(3): 180–4

    Article  PubMed  CAS  Google Scholar 

  233. Cantin AM, Larivee P, Begin RO. Extracellular glutathione suppresses human lung fibroblast proliferation. Am J Respir Cell Mol Biol 1990; 3(1): 79–85

    PubMed  CAS  Google Scholar 

  234. Borok Z, Buhl R, Grimes GJ, et al. Effect of glutathione aerosol on oxidant-antioxidant imbalance in idiopathic pulmonary fibrosis. Lancet 1991; 338(8761): 215–6

    Article  PubMed  CAS  Google Scholar 

  235. Meyer A, Buhl R, Magnussen H. The effect of oral N-acetylcysteine on lung glutathione levels in idiopathic pulmonary fibrosis. Eur Respir J 1994; 7(3): 431–6

    Article  PubMed  CAS  Google Scholar 

  236. Meyer A, Buhl R, Kampf S, et al. Intravenous N-acetylcysteine and lung glutathione of patients with pulmonary fibrosis and normals. Am J Respir Crit Care Med 1995; 152(3): 1055–60

    PubMed  CAS  Google Scholar 

  237. Behr J, Maier K, Degenkolb B, et al. Antioxidative and clinical effects of high-dose N-acetylcysteine in fibrosing alveolitis: adjunctive therapy to maintenance immunosuppression. Am J Respir Crit Care Med 1997; 156(6): 1897–901

    PubMed  CAS  Google Scholar 

  238. Tomioka H, Kuwata Y, Imanaka K, et al. A pilot study of aerosolized N-acetylcysteine for idiopathic pulmonary fibrosis. Respirology 2005; 10(4): 449–55

    Article  PubMed  Google Scholar 

  239. Demedts M, Behr J, Buhl R, et al. High-dose acetylcysteine in idiopathic pulmonary fibrosis. N Engl J Med 2005; 353(21): 2229–42

    Article  PubMed  CAS  Google Scholar 

  240. Hunninghake GW. Antioxidant therapy for idiopathic pulmonary fibrosis. N Engl J Med 2005; 353(21): 2285–7

    Article  PubMed  CAS  Google Scholar 

  241. Brewer GJ, Ullenbruch MR, Dick R, et al. Tetrathiomolybdate therapy protects against bleomycin-induced pulmonary fibrosis in mice. J Lab Clin Med 2003; 141(3): 210–6

    Article  PubMed  CAS  Google Scholar 

  242. Brewer GJ. Copper control as an antiangiogenic anticancer therapy: lessons from treating Wilson’s disease. Exp Biol Med (Maywood) 2001; 226(7): 665–73

    CAS  Google Scholar 

  243. Brewer GJ. Tetrathiomolybdate anticopper therapy for Wilson’s disease inhibits angiogenesis, fibrosis and inflammation. J Cell Mol Med 2003; 7(1): 11–20

    Article  PubMed  CAS  Google Scholar 

  244. Brewer GJ, Dick R, Ullenbruch MR, et al. Inhibition of key cytokines by tetrathiomolybdate in the bleomycin model of pulmonary fibrosis. J Inorg Biochem 2004; 98(12): 2160–7

    Article  PubMed  CAS  Google Scholar 

  245. US National Institutes of Health. Safety study of tetrathiomolybdate in patients with idiopathic pulmonary fibrosis [online]. Available from URL: http://www.clinicaltrials.gov/at/gui/show/NCT00189176 [Accessed 2006 Jul 12]

  246. Ehrenreich H, Anderson RW, Fox CH, et al. Endothelins, peptides with potent vasoactive properties, are produced by human macrophages. J Exp Med 1990; 172(6): 1741–8

    Article  PubMed  CAS  Google Scholar 

  247. Shahar I, Fireman E, Topilsky M, et al. Effect of endothelin-1 on alpha-smooth muscle actin expression and on alveolar fibroblasts proliferation in interstitial lung diseases. Int J Immunopharmacol 1999; 21(11): 759–75

    Article  PubMed  CAS  Google Scholar 

  248. Goto T, Yanaga F, Ohtsuki I. Studies on the endothelin-1-induced contraction of rat granulation tissue pouch mediated by myofibroblasts. Biochim Biophys Acta 1998; 1405(1-3): 55–66

    Article  PubMed  CAS  Google Scholar 

  249. Shi-Wen X, Chen Y, Denton CP, et al. Endothelin-1 promotes myofibroblast induction through the ETA receptor via a rac/phosphoinositide 3-kinase/Akt-dependent pathway and is essential for the enhanced contractile phenotype of fibrotic fibroblasts. Mol Biol Cell 2004; 15(6): 2707–19

    Article  PubMed  Google Scholar 

  250. Xu SW, Howat SL, Renzoni EA, et al. Endothelin-1 induces expression of matrix-associated genes in lung fibroblasts through MEK/ERK. J Biol Chem 2004; 279(22): 23098–103

    Article  PubMed  CAS  Google Scholar 

  251. Hocher B, Schwarz A, Fagan KA, et al. Pulmonary fibrosis and chronic lung inflammation in ET-1 transgenic mice. Am J Respir Cell Mol Biol 2000; 23(1): 19–26

    PubMed  CAS  Google Scholar 

  252. Park SH, Saleh D, Giaid A, et al. Increased endothelin-1 in bleomycin-induced pulmonary fibrosis and the effect of an endothelin receptor antagonist. Am J Respir Crit Care Med 1997; 156 (2 Pt 1): 600–8

    PubMed  CAS  Google Scholar 

  253. Mutsaers SE, Marshall RP, Goldsack NR, et al. Effect of endothelin receptor antagonists (BQ-485, Ro 47-0203) on collagen deposition during the development of bleomycin-induced pulmonary fibrosis in rats. Pulm Pharmacol Ther 1998; 11(2-3): 221–5

    Article  PubMed  CAS  Google Scholar 

  254. Giaid A, Michel RP, Stewart DJ, et al. Expression of endothelin-1 in lungs of patients with cryptogenic fibrosing alveolitis. Lancet 1993; 341(8860): 1550–4

    Article  PubMed  CAS  Google Scholar 

  255. Saleh D, Furukawa K, Tsao MS, et al. Elevated expression of endothelin-1 and endothelin-converting enzyme-1 in idiopathic pulmonary fibrosis: possible involvement of proinflammatory cytokines. Am J Respir Cell Mol Biol 1997; 16(2): 187–93

    PubMed  CAS  Google Scholar 

  256. Rubin LJ, Badesch DB, Barst RJ, et al. Bosentan therapy for pulmonary arterial hypertension. N Engl J Med 2002; 346(12): 896–903

    Article  PubMed  CAS  Google Scholar 

  257. BUILD program with bosentan: media release [online]. Available from URL: http://www.actelion.com/uninet/www/www_main_p.nsf/content/me+28+Nov+2005 [Accessed 2006 Jul 27]

  258. Broekelmann TJ, Limper AH, Colby TV, et al. Transforming growth factor beta 1 is present at sites of extracellular matrix gene expression in human pulmonary fibrosis. Proc Natl Acad Sci U S A 1991; 88(15): 6642–6

    Article  PubMed  CAS  Google Scholar 

  259. Khalil N, O’Connor RN, Unruh HW, et al. Increased production and immunohis-tochemical localization of transforming growth factor-beta in idiopathic pulmonary fibrosis. Am J Respir Cell Mol Biol 1991; 5(2): 155–62

    PubMed  CAS  Google Scholar 

  260. Bonniaud P, Margetts PJ, Kolb M, et al. Progressive transforming growth factor ta 1-induced lung fibrosis is blocked by an orally active ALK5 kinase inhibitor. Am J Respir Crit Care Med 2005; 171(8): 889–98

    Article  PubMed  Google Scholar 

  261. Bonniaud P, Kolb M, Galt T, et al. Smad3 null mice develop airspace enlargement and are resistant to TGF-beta-mediated pulmonary fibrosis. J Immunol 2004; 173(3): 2099–108

    PubMed  CAS  Google Scholar 

  262. Chen H, Sun J, Buckley S, et al. Abnormal mouse lung alveolarization caused by Smad3 deficiency is a developmental antecedent of centrilobular emphysema. Am J Physiol Lung Cell Mol Physiol 2005; 288(4): L683–91

    Article  PubMed  CAS  Google Scholar 

  263. Massague J, Blain SW, Lo RS. TGFbeta signaling in growth control, cancer, and heritable disorders. Cell 2000; 103(2): 295–309

    Article  PubMed  CAS  Google Scholar 

  264. Goldman JM, Melo JV. Targeting the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med 2001; 344(14): 1084–6

    Article  PubMed  CAS  Google Scholar 

  265. Daniels CE, Wilkes MC, Edens M, et al. Imatinib mesylate inhibits the profibrogenic activity of TGF-beta and prevents bleomycin-mediated lung fibrosis. J Clin Invest 2004; 114(9): 1308–16

    PubMed  CAS  Google Scholar 

  266. Aono Y, Nishioka Y, Inayama M, et al. Imatinib as a novel antifibrotic agent in bleomycin-induced pulmonary fibrosis in mice. Am J Respir Crit Care Med 2005; 171(11): 1279–85

    Article  PubMed  Google Scholar 

  267. Abdollahi A, Li M, Ping G, et al. Inhibition of platelet-derived growth factor signaling attenuates pulmonary fibrosis. J Exp Med 2005; 201(6): 925–35

    Article  PubMed  CAS  Google Scholar 

  268. Frisch SM, Vuori K, Ruoslahti E, et al. Control of adhesion-dependent cell survival by focal adhesion kinase. J Cell Biol 1996; 134(3): 793–9

    Article  PubMed  CAS  Google Scholar 

  269. Hadden HL, Henke CA. Induction of lung fibroblast apoptosis by soluble fibronectin peptides. Am J Respir Crit Care Med 2000; 162 (4 Pt 1): 1553–60

    PubMed  CAS  Google Scholar 

  270. Xia H, Nho RS, Kahm J, et al. Focal adhesion kinase is upstream of phosphatidylinositol 3-kinase/Akt in regulating fibroblast survival in response to contraction of type I collagen matrices via a beta 1 integrin viability signaling pathway. J Biol Chem 2004; 279(31): 33024–34

    Article  PubMed  CAS  Google Scholar 

  271. Vittal R, Horowitz JC, Moore BB, et al. Modulation of prosurvival signaling in fibroblasts by a protein kinase inhibitor protects against fibrotic tissue injury. Am J Pathol 2005; 166(2): 367–75

    Article  PubMed  CAS  Google Scholar 

  272. Olson JM, Hallahan AR. p38 MAP kinase: a convergence point in cancer therapy. Trends Mol Med 2004; 10(3): 125–9

    Article  PubMed  CAS  Google Scholar 

  273. Yamaguchi K, Shirakabe K, Shibuya H, et al. Identification of a member of the MAPKKK family as a potential mediator of TGF-beta signal transduction. Science 1995; 270(5244): 2008–11

    Article  PubMed  CAS  Google Scholar 

  274. Takekawa M, Tatebayashi K, Itoh F, et al. Smad-dependent GADD45beta expression mediates delayed activation of p38 MAP kinase by TGF-beta. EMBO J 2002; 21(23): 6473–82

    Article  PubMed  CAS  Google Scholar 

  275. Khalil N, Xu YD, O’Connor R, et al. Proliferation of pulmonary interstitial fibroblasts is mediated by transforming growth factor-beta1-induced release of extracellular fibroblast growth factor-2 and phosphorylation of p38 MAPK and JNK. J Biol Chem 2005; 280(52): 43000–9

    Article  PubMed  CAS  Google Scholar 

  276. Matsuoka H, Arai T, Mori M, et al. A p38 MAPK inhibitor, FR-167653, ameliorates murine bleomycin-induced pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol 2002; 283(1): L103–12

    PubMed  CAS  Google Scholar 

  277. Underwood DC, Osborn RR, Bochnowicz S, et al. SB 239063, a p38 MAPK inhibitor, reduces neutrophilia, inflammatory cytokines, MMP-9, and fibrosis in lung. Am J Physiol Lung Cell Mol Physiol 2000; 279(5): L895–902

    PubMed  CAS  Google Scholar 

  278. Nadrous HF, Ryu JH, Douglas WW, et al. Impact of angiotensin-converting enzyme inhibitors and statins on survival in idiopathic pulmonary fibrosis. Chest 2004; 126(2): 438–46

    Article  PubMed  CAS  Google Scholar 

  279. Leask A, Holmes A, Black CM, et al. Connective tissue growth factor gene regulation. Requirements for its induction by transforming growth factor-beta 2 in fibroblasts. J Biol Chem 2003; 278(15): 13008–15

    Article  PubMed  CAS  Google Scholar 

  280. Lasky JA, Ortiz LA, Tonthat B, et al. Connective tissue growth factor mRNA expression is upregulated in bleomycin-induced lung fibrosis. Am J Physiol 1998; 275 (2 Pt 1): L365–71

    PubMed  CAS  Google Scholar 

  281. Bonniaud P, Margetts PJ, Kolb M, et al. Adenoviral gene transfer of connective tissue growth factor in the lung induces transient fibrosis. Am J Respir Crit Care Med 2003; 168(7): 770–8

    Article  PubMed  Google Scholar 

  282. Pan LH, Yamauchi K, Uzuki M, et al. Type II alveolar epithelial cells and interstitial fibroblasts express connective tissue growth factor in IPF. Eur Respir J 2001; 17(6): 1220–7

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported, in part, by National Institutes of Health grants K08 HL081059 (to J.C.H.); R01 HL67967 and P50 HL74024 (to V.J.T.). The authors do not have any potential conflicts of interest that are directly relevant to the contents of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor J. Thannickal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Horowitz, J.C., Thannickal, V.J. Idiopathic Pulmonary Fibrosis. Treat Respir Med 5, 325–342 (2006). https://doi.org/10.2165/00151829-200605050-00004

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00151829-200605050-00004

Keywords

Navigation