Skip to main content
Log in

Therapeutic Potential of Monoclonal Antibodies in Myocardial Reperfusion Injury

  • Leading Article
  • Published:
American Journal of Cardiovascular Drugs Aims and scope Submit manuscript

Abstract

While reperfusion therapy in myocardial infarction is associated with better short- and long-term outcomes, it paradoxically results in reperfusion injury mediated by interactions between leukocytes, endothelial cells, platelets, and the myocardium. Several surface receptors, adhesion molecules, and ligands have been shown to be important in the pathogenesis of myocardial reperfusion injury, and therapeutic strategies employing the use of monoclonal antibodies have been attempted against many of them. These have included monoclonal antibodies against activated complement 5 (C5a) to inhibit leukotaxis, monoclonal antibodies against P-selectin, P-selectin glycoprotein ligand (PSGL)-1, L-selectin and E-selectin to inhibit leukocyte rolling, and monoclonal antibodies against the Mac-1 (CD11b/CD18) receptor and intercellular adhesion molecule (ICAM)-1 to block firm adhesion of leukocytes to endothelial cells. In addition, although initially developed as an antiplatelet agent, the glycoprotein IIb/IIIa receptor antagonist abciximab shows significant ability to diminish or prevent reperfusion injury, presumably through its ability to block the Mac-1 receptor on leukocytes. Finally, monoclonal antibodies have also been tested against several cytokines and adhesion molecules implicated in so-called subacute endothelial activation, including interleukin-8 and vascular cell adhesion molecule (VCAM)-1.

Studies in animals evaluating the use of monoclonal antibodies in reperfusion injury against various potential targets have largely been successful; however, studies in humans have been disappointing, underscoring the pitfalls of using animal models for the study of complex diseases. Based upon current knowledge, it is becoming clear that a successful strategy against reperfusion injury will require targeting several pathways at once, rather than attempting to block one final common pathway. In addition, inhibition of subacute endothelial activation through inhibition of transcription factors, namely nuclear factor (NF)-κB, may be a prerequisite to significantly reducing the extent of myocardial damage in this condition. The future of monoclonal antibodies in the overall strategy remains unclear. Newer small molecule inhibitors are also under development, and the eventual role of gene therapy remains to be elucidated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Table I

Similar content being viewed by others

References

  1. White HD, Cross DB, Elliott JM, et al. Long-term prognostic importance of patency of the infarct-related coronary artery after thrombolytic therapy for acute myocardial infarction. Circulation 1994; 89: 61–7

    Article  PubMed  CAS  Google Scholar 

  2. GUSTO Investigators. An international randomized trial comparing four thrombolytic strategies for acute myocardial infarction. N Engl J Med 1993; 329: 673–82

    Article  Google Scholar 

  3. Duilio C, Ambrosio G, Kuppusamy P, et al. Neutrophils are primary source of O2 radicals during reperfusion injury after prolonged myocardial ischemia. Am J Physiol 2001; 280: H2649–57

    CAS  Google Scholar 

  4. Heymans S, Luttun A, Nuyens D, et al. Inhibition of Plasminogen activators or matrix metalloproteinases prevents cardiac rupture but impairs therapeutic angiogenesis and causes cardiac failure. Nat Med 1999; 5(10): 1135–42

    Article  PubMed  CAS  Google Scholar 

  5. Hammerman H, Kloner RA, Hale S, et al. Dose-dependent effects of short-term methylprednisolone on myocardial infarct extent, scar formation, and ventricular function. Circulation 1983; 68: 446–52

    Article  PubMed  CAS  Google Scholar 

  6. Frangogiannis NG, Youker KA, Rossen RD, et al. Cytokines and the microcirculation in ischemia and reperfusion. J Mol Cell Cardiol 1998; 30: 2567–76

    Article  PubMed  CAS  Google Scholar 

  7. Crawford MH, Grover FL, Kolb WP, et al. Complement and neutrophil activation in the pathogenesis of myocardial injury. Circulation 1988; 78: 1449–58

    Article  PubMed  CAS  Google Scholar 

  8. Birdsall HH, Green D, Trial J, et al. Complement C5a, TGF-beta 1, and MCP-1, in sequence, induce migration of monocytes into ischemic canine myocardium within the first one to five hours after reperfusion. Circulation 1997; 95:684–92

    Article  PubMed  CAS  Google Scholar 

  9. von Andrian UH, Chambers JD, McEvoy LM, et al. Two-step model of leukocyte-endothelial cell interaction in inflammation: distinct roles for LECAM-1 and the leukocyte β2 integrins in vivo. Proc Natl Acad Sci U S A 1991; 88: 7538–42

    Article  Google Scholar 

  10. Pinsky DJ, Naka Y, Liao H, et al. Hypoxia-induced exocytosis of endothelial cell weibel-palade bodies. J Clin Invest 1996; 97: 493–500

    Article  PubMed  CAS  Google Scholar 

  11. Moore KL, Eaton SF, Lyons DE, et al. The P-selectin glycoprotein ligand from human neutrophils displays sialylated, fucosylated, O-linked poly-N-acetyllactosamine. J Biol Chem 1994; 269: 23318–27

    PubMed  CAS  Google Scholar 

  12. Moore KL, Patel KD, Bruehl RE, et al. P-selectin glycoprotein ligand-1 mediates rolling of human neutrophils on P-selectin. J Cell Biol 1995; 128: 661–71

    Article  PubMed  CAS  Google Scholar 

  13. Chamoun F, Burne M, O’Donnell M, et al. Pathophysiologic role of selectins and their ligands in ischemia reperfusion injury. Front Biosci 2000; 5: 103–9

    Article  Google Scholar 

  14. Fraticelli A, Serrano Jr CV, Bochner BS, et al. Hydrogen peroxide and Superoxide modulate leukocyte adhesion molecule expression and leukocyte endothelial adhesion. Biochim Biophys Acta 1996; 1310: 251–9

    Article  PubMed  Google Scholar 

  15. Diamond MS, Springer TA. A subpopulation of Mac-1 (CD11b/CD18) molecule mediates neutrophil adhesion to ICAM-1 and fibrinogen. J Cell Biol 1993; 120: 545–56

    Article  PubMed  CAS  Google Scholar 

  16. Frangogiannis NG, Youker KA, Rossen RD, et al. Cytokines and the microcirculation in ischemia and reperfusion. J Mol Cell Cardiol 1998; 30: 2567–76

    Article  PubMed  CAS  Google Scholar 

  17. Bowden RA, Ding Z-M, Donnachie EM, et al. Role of α4 integrin and VCAM-1 in CD18-independent neutrophil migration across mouse cardiac endothelium. Circ Res 2002; 90: 562–9

    Article  PubMed  CAS  Google Scholar 

  18. Jordan JE, Zhao ZQ, Vinten-Johnansen J. The role of neutrophils in myocardial ischemia-reperfusion injury. Cardiovasc Res 1999; 43(4): 860–78

    Article  PubMed  CAS  Google Scholar 

  19. Weber C, Springer TA. Neutrophil accumulation on activated, surface-adherent platelets in flow is mediated by interaction of Mac-1 with fibrinogen bound to alpha 2 beta 3 and stimulated by platelet-activating factor. J Clin Invest 1997; 100: 2085–93

    Article  PubMed  CAS  Google Scholar 

  20. Kupatt C, Hanusch P, Habazettl H, et al. Abciximab reduces postischemic stunning caused by platelet-PMN interaction in isolated hearts [abstract]. Circulation 1999; 100 Suppl. 1:1–545

    Article  Google Scholar 

  21. Kaplanski G, Fabrigoule M, Boulay V, et al. Thrombin induces endothelial type II activation in vitro: IL-1 and TNF-α-independent IL-8 secretion and E-selectin expression. J Immunol 1997; 158: 5435–41

    PubMed  CAS  Google Scholar 

  22. Kupatt C, Habazettl H, Becker BF, et al. Endothelial activation: a strategic event during postischemic myocardial inflammation. Z Kardiol 2000; 89 (9 Suppl.): 96–100

    Google Scholar 

  23. Chandrasekar B, Freeman GL. Induction of nuclear factor kappaB and activation protein 1 in postischemic myocardium. FEBS Lett 1997; 401: 30–4

    Article  PubMed  CAS  Google Scholar 

  24. Frangogiannis NG, Lindsey ML, Michael LH, et al. Resident cardiac mast cells degranulate and release preformed TNF-α initiating the cytokine cascade in myocardial infarction/reperfusion. Circulation 1998; 98: 699–710

    Article  PubMed  CAS  Google Scholar 

  25. Youker KA, Smith CW, Anderson DC, et al. Neutrophil adherence to isolated cardiac myocytes: induction by cardiac lymph collected during ischemia and reperfusion. J Clin Invest 1992; 89: 602–9

    Article  PubMed  CAS  Google Scholar 

  26. Kukielka GL, Hawkins HK, Michael LH, et al. Regulation of intercellular adhesion molecule-1 (ICAM-1) in ischemic and reperfused myocardium. J Clin Invest 1993; 92: 1504–16

    Article  PubMed  CAS  Google Scholar 

  27. Entman ML, Youker KA, Shappell SB, et al. Neutrophil adherence to isolated canine myocytes: evidence for a CD18-dependent mechanism. J Clin Invest 1990; 85: 1497–506

    Article  PubMed  CAS  Google Scholar 

  28. Entman ML, Youker KA, Shoji T, et al. Neutrophil induced oxidative injury of cardiac myocytes: a compartmented system requiring CD11b/CD-18-ICAM-1 adherence. J Clin Invest 1992; 90: 1335–45

    Article  PubMed  CAS  Google Scholar 

  29. Vakeva AP, Azin A, Rollins SA, et al. Myocardial infarction and apoptosis after myocardial ischemia and reperfusion: role of the terminal complement components and inhibition by anti-C5 therapy. Circulation 1998; 97: 2259–67

    Article  PubMed  CAS  Google Scholar 

  30. Thomas TC, Rollins SA, Rother RP, et al. Inhibition of complement activity by humanized anti-C5 antibody and single-chain Fv. Mol Immunol 1996; 33: 1389–401

    Article  PubMed  CAS  Google Scholar 

  31. Fitch JCK, Rollins S, Matis L, et al. Pharmacology and biological efficacy of a recombinant, humanized, single-chain antibody C5 complement inhibitor in patients undergoing coronary artery bypass graft surgery with cardiopulmonary bypass. Circulation 1999; 100: 2499–506

    Article  PubMed  CAS  Google Scholar 

  32. Anon. Alexion begins phase III pivotal PRIMO-CABG trial [online]. Available from URL: http://www/AlexionPharm.com/news/ [Accessed 2002 Apr 22]

  33. Anon. Alexion completes enrollment in first two acute myocardial infarction phase II trials with pexelizumab [online]. Available from URL: http://www.Al-exionPharm.com/news/ [Accessed 2002 Apr 22]

  34. Bahit MC, Granger CB. Current trials in acute myocardial infarction. Cardiology Spec Ed 2001; 7 (2 of 2): 49–55

    Google Scholar 

  35. Lefer DJ. Pharmacology of selectin inhibitors in ischemia/reperfusion states. Annu Rev Pharmacol Toxicol 2000; 40: 283–94

    Article  PubMed  CAS  Google Scholar 

  36. Weyrich AS, Ma XL, Lefer DJ, et al. In vivo neutralization of P-selectin protects feline heart and endothelium in myocardial ischemia and reperfusion injury. J Clin Invest 1993; 91: 2620–9

    Article  PubMed  CAS  Google Scholar 

  37. Chen LY, Nichols WW, Hendricks JB, et al. Monoclonal antibody to P-selectin (PB1.3) protects against myocardial reperfusion injury in the dog. Cardiovasc Res 1994; 28: 1414–22

    Article  PubMed  CAS  Google Scholar 

  38. Lefer DJ, Flynn DM, Buda AJ. Effects of a monoclonal antibody directed against P-selectin after myocardial ischemia and reperfusion. Am J Physiol 1996; 270: H88–98

    PubMed  CAS  Google Scholar 

  39. Yamada K, Tojo SJ, Hayashi M, et al. The role of P-selectin, sialyl Lewis X and sulfatide in myocardial ischemia and reperfusion injury. Eur J Pharmacol 1998; 346: 217–25

    Article  PubMed  CAS  Google Scholar 

  40. Jones SP, Girod WG, Granger DN, et al. Reperfusion injury is not affected by blockade of P-selectin in the diabetic mouse heart. Am J Physiol 1999; 46: H763–9

    Google Scholar 

  41. Hayward R, Campbell B, Shin YK, et al. Recombinant soluble P-selectin glycoprotein ligand-1 protects against myocardial ischemic reperfusion injury in cats. Cardiovasc Res 1999; 41: 65–76

    Article  PubMed  CAS  Google Scholar 

  42. Lefer Am, Campbell B, Scalia R, et al. Synergism between platelets and neutrophils in provoking cardiac dysfunction after ischemia and reperfusion: role of selectins. Circulation 1998; 98: 1322–8

    Article  PubMed  CAS  Google Scholar 

  43. Ma XL, Weyrich AS, Lefer DJ, et al. Myocardial ischemia/reperfusion: monoclonal antibody to L-selectin attenuates neutrophil accumulation and protects ischemic reperfused cat myocardium. Circulation 1993; 88: 649–58

    Article  PubMed  CAS  Google Scholar 

  44. Buerke M, Weyrich AS, Murohara T, et al. Humanized monoclonal antibody DREG-200 directed against L-selectin protects in feline myocardial reperfusion injury. J Pharmacol Exp Ther 1994; 271: 134–42

    PubMed  CAS  Google Scholar 

  45. Mihelcic D, Schleiffenbaum B, Tedder TF, et al. Inhibition of leukocyte L-selectin function with a monoclonal antibody attenuates reperfusion injury to the rabbit ear. Blood 1994; 84: 2322–8

    PubMed  CAS  Google Scholar 

  46. Yan ZQ, Bolognesi MP, Steeber DA, et al. Blockade of L-selectin attenuates reperfusion injury in a rat model. J Reconstr Microsurg 2000; 16(3): 227–33

    Article  PubMed  CAS  Google Scholar 

  47. Weyrich AS, Buerke M, Albertine KH, et al. Time course of coronary vascular endothelial adhesion molecule expression during reperfusion of the ischemic feline myocardium. J Leukoc Biol 1995; 57(1): 45–55

    PubMed  CAS  Google Scholar 

  48. Kurose I, Anderson DC, Miyasaka M, et al. Molecular determinants of reperfusion-induced leukocyte adhesion and vascular protein leakage. Circ Res 1994; 74: 336–43

    Article  PubMed  CAS  Google Scholar 

  49. Winquist RJ, Frei PF, Letts G, et al. Monoclonal antibody to intercellular adhesion molecule-1, but not to endothelial-leukocyte adhesion molecule-1, protects against myocardial ischemia/reperfusion damage in anesthetized monkeys [abstract]. Circulation 1992; 86:I–79

    Google Scholar 

  50. Shyu K-G, Chang H, Lin CC, et al. Circulating intercellular adhesion molecule-1 and E-selectin in patients with acute coronary syndrome. Chest 1996; 19:1627–30

    Article  Google Scholar 

  51. Simpson PJ, Todd III RF, Fantone JC, et al. Reduction of experimental canine myocardial reperfusion injury by a monoclonal antibody (anti-Mol, anti-CD11b) that inhibits leukocyte adhesion. J Clin Invest 1988; 81: 624–9

    Article  PubMed  CAS  Google Scholar 

  52. Simpson PJ, Todd RF III, Mickelson JK, et al. Sustained limitation of myocardial reperfusion injury by a monoclonal antibody that alters leukocyte function. Circulation 1990; 81(1): 226–37

    Article  PubMed  CAS  Google Scholar 

  53. Dreyer WJ, Michael LH, West MS, et al. Neutrophil accumulation in ischemic canine myocardium: insights into time course, distribution, and mechanism of localization during early reperfusion. Circulation 1991; 84: 400–11

    Article  PubMed  CAS  Google Scholar 

  54. Ma XL, Tsao PS, Lefer AM. Antibody to CD-18 exerts endothelial and cardiac protective effects in myocardial ischemia and reperfusion. J Clin Invest 1991; 88: 1237–43

    Article  PubMed  CAS  Google Scholar 

  55. Lefer DJ, Shandelya SM, Serrano Jr CV, et al. Molecular and cellular cardiology: cardioprotective actions of a monoclonal antibody against CD-18 in myocardial ischemia-reperfusion injury. Circulation 1993; 88: 1779–87

    Article  PubMed  CAS  Google Scholar 

  56. Aversano T, Zhou W, Nedelman M, et al. A chimeric IgG4 monoclonal antibody directed against CD 18 reduces infarct size in a primate model of myocardial ischemia and reperfusion. J Am Coll Cardiol 1995; 25: 781–8

    Article  PubMed  CAS  Google Scholar 

  57. Rusnak JM, Kopecky SL, Clements IP, et al. An anti-CD11/CD18 monoclonal antibody in patients with acute myocardial infarction having percutaneous transluminal coronary angioplasty: the FESTIVAL Study. Am J Cardiol 2001; 88: 482–7

    Article  PubMed  CAS  Google Scholar 

  58. Baran KW, Nguyen M, McKendall GR, et al. Double-blind, randomized trial of an anti-CD18 antibody in conjunction with recombinant tissue Plasminogen activatorfor acute myocardial infarction. Circulation 2001; 104: 2778–83

    Article  PubMed  CAS  Google Scholar 

  59. Neumann FJ, Blasini R, Schmitt C, et al. Effect of glycoprotein IIb/IIIa receptor blockade on recovery of coronary flow and left ventricular function after the placement of coronary-artery Stents in acute myocardial infarction. Circulation 1998; 98: 2695–701

    Article  PubMed  CAS  Google Scholar 

  60. de Lemos JA, Antman EM, Gibson CM, et al. Abciximab improves both epicardial flow and myocardial reperfusion in ST-elevation myocardial infarction: observations from the TIMI-14 Trial. Circulation 2000; 101: 239–43

    Article  PubMed  Google Scholar 

  61. Ma XL, Lefer DJ, Lefer AM, et al. Coronary endothelial and cardiac protective effects of a monoclonal antibody to intercellular adhesion molecule in myocardial ischemia and reperfusion. Circulation 1992; 86: 937–46

    Article  PubMed  CAS  Google Scholar 

  62. Faxon DP, Gibbons RJ, Chronos NAF, et al. The effect of a CD11/CD18 inhibitor (Hu23F2G) on infarct size following direct angioplasty: the HALT MI Study [abstract]. Circulation 1999; 100(18): I–791

    Google Scholar 

  63. Liles WC, Dale DC, Price TH, et al. Inhibition of in vivo neutrophil transmigration by a novel humanized anti-CD11/CD18 monoclonal antibody. Cytokines Cell Mol Ther 2000; 6: 121–6

    PubMed  CAS  Google Scholar 

  64. Bowen JD, Petersdorf SH, Richards TL, et al. Phase I study of a humanized anti-CD11/CD18 monoclonal antibody in multiple sclerosis. Clin Pharmacol Ther 1998; 64(3): 339–46

    Article  PubMed  CAS  Google Scholar 

  65. Simon DI, Xu H, Ortlepp S, et al. 7E3 monoclonal antibody directed against the platelet glycoprotein IIb/IIIa cross-reacts with the leukocyte integrin Mac-1 and blocks adhesion to fibrinogen and ICAM-1. Arterioscler Thromb Vasc Biol 1997; 17: 528–35

    Article  PubMed  CAS  Google Scholar 

  66. Dove A. CD18 trials disappoint again. Nat Biotechnol 2000; 18(8): 817–8

    Article  PubMed  CAS  Google Scholar 

  67. Kokura S, Wolf RE, Yoshikawa T, et al. Molecular mechanisms of neutrophilendothelial cell adhesion induced by redox imbalance. Circ Res 1999; 84: 516–24

    Article  PubMed  CAS  Google Scholar 

  68. Mori N, Horie H, Gerritsen ME, et al. Ischemia-reperfusion induced microvascular responses in LDL-receptor -/- mice. Am J Physiol 1999; 276: H1647–54

    PubMed  CAS  Google Scholar 

  69. Lefer DJ, Flynn DM, Anderson DC, et al. Combined inhibition of P-selectin and ICAM-1 reduces myocardial injury following ischemia and reperfusion. Am J Physiol 1996; 271: H2421–9

    PubMed  CAS  Google Scholar 

  70. Tamiya Y, Yamamoto N, Uede T. Protective effect of monoclonal antibodies against LFA-1 and ICAM-1 on myocardial reperfusion injury following global ischemia in rat hearts. Immunopharmacology 1995; 29: 53–63

    Article  PubMed  CAS  Google Scholar 

  71. Neumann F-J, Zohlnhöfer D, Fakhoury L, et al. Effect of glycoprotein IIb/IIIa receptor blockade on platelet-leukocyte interaction and surface expression of the leukocyte integrin Mac-1 in acute myocardial infarction. J Am Coll Cardiol 1999; 34: 1420–6

    Article  PubMed  CAS  Google Scholar 

  72. Coller BS. Potential non-glycoprotein IIb/IIIa effects of abciximab. Am Heart J 1999; 138 (1 Suppl. Pt 2): S1–5

    Article  PubMed  CAS  Google Scholar 

  73. Plescia J, Conte MS, VanMeter G, et al. Molecular identification of the crossreacting epitope on alphaM beta2 integrin I domain recognized by anti-alphaIIb beta3 monoclonal antibody 7E3 and its involvement in leukocyte adherence. J Biol Chem 1998; 273: 20372–7

    Article  PubMed  CAS  Google Scholar 

  74. Furman MI, Krueger LA, Frelinger AL, et al. Tirofiban and eptifibatide, but not abciximab, induce leukocyte-platelet aggregation [abstract]. J Am Coll Cardiol 1999; 100:1–857

    Google Scholar 

  75. Morel JCM, Park CC, Woods JM, et al. A novel role for interleukin-18 in adhesion molecule induction through NF-κB and phosphatidylinositol (PI) 3-kinasedependent signal transduction pathways. J Biol Chem 2001; 276: 37069–75

    Article  PubMed  CAS  Google Scholar 

  76. Tsuruma T, Yagihashi A, Tarumi K, et al. Anti-rat IL-8 (CINQ monoclonal antibody administration reduces ischemia-reperfusion injury in small intestine. Transplant Proc 1998; 30: 2644–5

    Article  PubMed  CAS  Google Scholar 

  77. Kokura S, Wolf RE, Yoshikawa T, et al. T-lymphocyte-derived tumor necrosis factor exacerbates anoxia-reoxygenation-induced neutrophil-endothelial cell adhesion. Circ Res 2000; 86: 205–13

    Article  PubMed  CAS  Google Scholar 

  78. Kim CD, Kim YK, Lee SH, et al. Rebamipide inhibits neutrophil adhesion to hypoxia/reoxygenation-stimulated endothelial cells via nuclear factor. J Pharmacol Exp Ther 2000; 294(3): 864–9

    PubMed  CAS  Google Scholar 

  79. Krishnadasan B, Naidu B, Rosengart M, et al. Decreased lung ischemia-reperfusion injury in rats after preoperative administration of cyclosporine and tacrolimus. J Thorac Cardiovasc Surg 2002; 123: 756–67

    Article  PubMed  CAS  Google Scholar 

  80. Chatterjee PK, Brown PA, Cuzzocrea S, et al. Calpain inhibitor-1 reduces renal ischemia/reperfusion injury in the rat. Kidney Int 2001; 59: 2073–83

    PubMed  CAS  Google Scholar 

  81. Elliott GT, Sowell CG, Walker EB, et al. The novel glycolipid RC-552 attenuates myocardial stunning and reduces infarct size in dogs. J Mol Cell Cardiol 2000; 32: 1327–39

    Article  PubMed  CAS  Google Scholar 

  82. Matsubara A, Tomida K, Matsuda Y, et al. Protective effects of selectin ligands /inhibitor (SKK-60060) against retinal ischemia-reperfusion injury. Exp Eye Res 2000; 71: 283–93

    Article  PubMed  CAS  Google Scholar 

  83. Zoldhelyi P, Beck PJ, Bjercke RJ, et al. Inhibition of coronary thrombosis and local inflammation by a noncarbohydrate selectin inhibitor. Am J Physiol 2000; 279: H3065–75

    CAS  Google Scholar 

Download references

Acknowledgements

We thank Terry Jopke for her help in manuscript preparation. The authors have provided no information on sources of funding or on conflicts of interest directly relevant to the content of this review/study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen L. Kopecky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nigam, A., Kopecky, S.L. Therapeutic Potential of Monoclonal Antibodies in Myocardial Reperfusion Injury. Am J Cordiovosc Drugs 2, 367–376 (2002). https://doi.org/10.2165/00129784-200202060-00002

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00129784-200202060-00002

Keywords

Navigation