Skip to main content
Log in

Health Promotion and Exercise Training

  • Review Article
  • Published:
Sports Medicine Aims and scope Submit manuscript

Summary

Health is determined not only by the absence of disease, but also by an individual’s resistance to pathogenic factors. In turn, resistance depends on the effectiveness of specific homeostatic regulation and the mechanism of general adaptation. Through the change in adaptivity, health may be increased or reduced. While it is difficult to predict which specific homeostatic mechanism will be necessary in various stages of life in the individual, it is more reliable to try to improve health, thereby increasing the effectiveness of the mechanism of general adaptation.

Physical training results in a variety of changes in individuals. There are several changes which are essential both for increased exercise performance and for increasing adaptivity, by favouring the effectiveness of the mechanism of general adaptation. These changes: improve central nervous regulation and central nervous system functions; increase endocrine system capacity; increase energy potential; improve the capacity of the oxygen transport system; improve oxidation processes; increase metabolic and functional economy; increase functional stability; and increase the number of Na+,K+-pumps.

The influence of these changes on adaptivity is accomplished by the influence of exercise training on immunoactivities, and by the antisclerotic effect of training. The latter may be considered to be metabolic (actualised through the training effect on lipoprotein metabolism and aging-related calcium distribution) or mechanical (protection of tissues from sclerotic changes by their activities) effects.

The training effects are specifically dependent upon performed exercises. Endurance exercise is considered to be the most important and widely recommended form of exercise for health improvement. Most of the training benefits (listed above) for increased adaptivity are induced by aerobic endurance training. Gymnastic exercises are indispensable in regard to mechanical antisclerotic effect. They are also essential influences on the central nervous system. Aerobic dance or aerobic rhythmic gymnastics are ways by which the positive effects of endurance and gymnastic exercise can be combined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. World Health Organization. WHO basic documents. 38th ed. Geneva: WHO, 1990

    Google Scholar 

  2. Amosov NM. Meditation on health [in Russian]. 3rd ed. Kemerovo: Progress, 1981

    Google Scholar 

  3. Karvonen MJ. Physical activity and health. Finnish Sports Exerc Med 1983; 2: 4–9

    Google Scholar 

  4. Kaznatscheyev VP. Survey on the theory and practice of human ecology [in Russian]. Leningrad: Nauka, 1980

    Google Scholar 

  5. Cannon WB. Organization for physiological homeostasis. Physiol Rev 1929; 9: 339–431

    Google Scholar 

  6. Selye H. The physiology and pathology of exposure to stress. Montreal: ACTA Medical, 1950

    Google Scholar 

  7. Viru A. Mechanism of general adaptation. Med Hypoth 1992; 38: 296–300

    Article  CAS  Google Scholar 

  8. Agadzhanjan NA. Criteria of adaptation and ecoportrait of humans. In: Korobkov AV, editor. Physiological and clinical problems of adaptation to hypoxia, hypodynamia and hyperthermia, vol. 1 [in Russian]. Moscow: P. Lumumba University, 1981: 19–27

    Google Scholar 

  9. Blair SN. Physical activity, physical fitness and health. Res Q Exerc Sport 1993; 64: 365–76

    PubMed  CAS  Google Scholar 

  10. Bouchard C, Shephard RJ, Stephens T, et al. Exercise, fitness, and health: a consensus of current knowledge. Champaign, Ill.: Human Kinetics, 1990

    Google Scholar 

  11. Bouchard C, Shephard RJ, Stephens T, editors. Physical activity, fitness, and health. Champaign, Ill.: Human Kinetics, 1993

    Google Scholar 

  12. Leon AS. Physical activity and risk of ischemic heart disease — an update, 1990. In: Oja P, Telama A, editors. Sport for all. Amsterdam: Elsevier Science, 1991: 251–64

    Google Scholar 

  13. United States Center for Disease Control and Prevention and the American College of Sports Medicine. Workshop on physical activity and public health: summary statement. Atlanta, GA, 1993

    Google Scholar 

  14. Gazenko OG, Meerson FS, editors. Physiology of adaptation processes [in Russian]. Moscow: Nauka, 1986

    Google Scholar 

  15. Food and Nutrition Board. Diet and health: implications for reducing disease risk. Washington: National Academy Press, 1986

    Google Scholar 

  16. Kolonel LN. Variability in diet and its relation to risk in ethnic and migrant groups. Basic Life Sci 1988; 43: 129–35

    PubMed  CAS  Google Scholar 

  17. Tuckermann MM, Turco SJ. Human nutrition. Philadelphia: Lea & Fehiger, 1983

    Google Scholar 

  18. Paillard J. The patterning of skilled movements. In: Handbook of physiology, sect. 1, pt 3. Washington D.C.: American Society of Physiology, 1960: 1679–708

    Google Scholar 

  19. Sale DG. Neural adaptation to strength training. In: Komi PV, editor. Strength and power in sport. London: Blackwell Scientific, 1992: 249–65

    Google Scholar 

  20. Barney J, Ebert TJ, Groban L, et al. Carotid baroreflex responsiveness in high-fit and sedentary young men. J Appl Physiol 1988; 65: 2190–5

    PubMed  CAS  Google Scholar 

  21. Rowell LB. Human circulation regulation during physical stress. New York: Oxford University Press, 1986

    Google Scholar 

  22. Saltin B. The interplay between peripheral and central factors in the adaptive responses to exercise and training. Ann N Y Acad Sci 1977; 301: 224–31

    Article  PubMed  CAS  Google Scholar 

  23. Scheuer J, Tipton CM. Cardiovascular adaptation to physical training. Ann Rev Physiol 1977; 39: 221–51

    Article  CAS  Google Scholar 

  24. Pysh JJ, Weiss GM. Exercise during development induces an increase in Purkinje cell dendritic tree size. Science 1979; 206: 230–1

    Article  PubMed  CAS  Google Scholar 

  25. Gilliam TB, Rey RR, Taylor JF, et al. Ventral motor neuron alteration in rat spinal cord after chronic exercise. Experimentia 1977; 15: 66–8

    Google Scholar 

  26. Gerschman LB, Edgerton VR, Carrow RE. Effect of physical training on the histochemistry and morphology of central motor neurons. Exp Neurol 1975; 49: 790–4

    Article  Google Scholar 

  27. Yakovlev NN. Sportbiochemie. Leipzig: Barth, 1977

    Google Scholar 

  28. Petrén T. Untersuchungen über die relative Capillarlänge der motorischen Hirnrinde in normalern Zustand und nach Muskeltraining. Anat Anz 1938; 85: 169–78

    Google Scholar 

  29. Orlova EA, Pshennikova MG, Dmitriyev AD, et al. An increase of the content of immunoreactive opioid peptides in brain and adrenals of rats under the influence of adaptation to muscular activity. Byull Eksp Biol Med (Moscow) 1988; 105: 143–8

    Google Scholar 

  30. Tendzegolskis Z, Viru A, Orlova E. Exercise-induced changes of endorphin contents in hypothalamus, hypophysis, adrenals and blood plasma. Int J Sports Med 1991; 12: 495–7

    Article  PubMed  CAS  Google Scholar 

  31. Biddle SJH. Exercise psychology. Sport Sci Rev 1992; 1: 79–92

    Google Scholar 

  32. Biddle SJH, Mutrie N. Psychology of physical activity and exercise: a health-related perspective. London: Springer Verlag, 1991

    Book  Google Scholar 

  33. Morgan WP, Goldsten SE, editors. Exercise and mental health. Washington D.C.: Hemisphere, 1987

    Google Scholar 

  34. Stephens T. Physical activity and mental health in the United States and Canada: evidence from four population surveys. Prevent Med 1988; 17: 35–47

    Article  CAS  Google Scholar 

  35. Galbo H. Hormonal and metabolic adaptation to exercise. Stuttgart: Georg Thieme Verlag, 1983

    Google Scholar 

  36. Viru A. Hormones in muscular activity, vol. 1: hormonal ensemble in exercise. Boca Raton: CRC Press, 1985

    Google Scholar 

  37. Frenkl K. Pituitary-adrenal response to various stressors in trained and untrained organism. Acta Physiol Acad Sci Hungaricae 1971; 39: 41–6

    CAS  Google Scholar 

  38. Galbo H. Exercise physiology: humoral functions. Sports Sci Rev 1992; 1: 65–93

    Google Scholar 

  39. Kjaer M. Regulation of hormonal and metabolic responses during exercise in humans. Exerc Sport Sci Rev 1992; 20: 161–84

    PubMed  CAS  Google Scholar 

  40. Farrell PA, Kjaer M, Bach FW, et al. Beta-endorphin and adrenocorticotropin response to supramaximal treadmill exercise in trained and untrained males. Acta Physiol Scand 1987; 130: 619–25

    Article  PubMed  CAS  Google Scholar 

  41. Snegovskaya V, Viru A. Steroid and pituitary hormonal responses to rowing exercises: relative significance of exercise intensity and duration and performance level. Eur J Appl Physiol 1993; 67: 59–65

    Article  CAS  Google Scholar 

  42. Bullen BA, Skrinar S, Beitins IZ, et al. Endurance training effects on plasma hormonal responsiveness and sex hormone excretion. J Appl Physiol 1984; 56: 1453–73

    PubMed  CAS  Google Scholar 

  43. Hort W. Morphologische und physiologische Untersuchungen an Ratten während eines Leuftrainings und nach dem Training. Virchow Archiv 1951; 320: 197–237

    Article  CAS  Google Scholar 

  44. Erankö O, Karvonen M, Raisenen L. Long-term effects of muscular work on the adrenal medulla of the rat. Acta Endocrinol 1962; 39: 285–7

    Google Scholar 

  45. Viru A, Seene T. Peculiarities of adjustments on the adrenal cortex to various training regimes. Biol Sport 1985; 2: 90–9

    Google Scholar 

  46. Viru A, Toode K, Modulierende Regulation von Hormoneffekten bei muskulärer Aktivität. In: Weiss M, Reider H, editors. Sportmedizinische Forschung. Berlin: Springer-Verlag, 1991: 83–99

    Chapter  Google Scholar 

  47. Kjaer M, Christensen NJ. Sonne B, et al. Effect of exercise on epinephrine turnover in trained and untrained subjects. J Appl Physiol 1985; 59: 1061–7

    PubMed  CAS  Google Scholar 

  48. Saltin B, Gollnick PD. Skeletal muscle adaptability. Significance for metabolism and performance. In: Peachy LD, Adrian RH, Geiger SR, editors. Handbook of physiology, sect. 10: skeletal muscle. Baltimore: Williams & Wilkins, 1983: 555–637

    Google Scholar 

  49. Viru A, Viru M. The specific nature of training on muscle: a review. Sports Training Med Rehab 1993; 4: 79–98

    Article  Google Scholar 

  50. Poland JL, Blount DH. The effect of training on myocardial metabolism. Proc Soc Exp Biol Med 1968; 129: 171–4

    PubMed  CAS  Google Scholar 

  51. Scheuer J, Kapner L, Stringfellow CA, et al. Glycogen, lipid and high energy phosphate stores in hearts from conditioned rats. J Lab Clin Med 1970; 15: 924–8

    Google Scholar 

  52. Yakovlev NN. Life and environment [in Russian]. Leningrad: Nauka, 1986

    Google Scholar 

  53. Herxheimer H. Die Herzgrösse bei Sportleuten und ihr Beurteilung. Klin Wochenschr 1924; 49: 2225–7

    Article  Google Scholar 

  54. Hollmann W. Arbeits- und Trainingseinfluss auf Kreislauf und Atmung. Darmstadt: Steinkopf-Verlag, 1959

    Google Scholar 

  55. Reindell H, Klepzig H, Steim H, et al. Herz- und Kreislauf krankheiten und Sport. Munich: JA Barth, 1960

    Google Scholar 

  56. Cohen JL, Segal KR. Left ventricular hypertrophy in athletes: an exercise-echocardiographic study. Med Sci Sports Exerc 1985; 17: 695–700

    Article  PubMed  CAS  Google Scholar 

  57. Dickhuth HH, Simon G, Kindermann W, et al. Echocardiographic studies on athletes of various sport-types and non-athletic persons. Z Kardiol 1979; 68: 449–53

    PubMed  CAS  Google Scholar 

  58. Keul J, Dickhuth H-H, Lehmann M, et al. The athlete’s heart — haemodynamics and structure. Int J Sports Med 1982; 3Suppl. 1: 33–43

    Article  PubMed  Google Scholar 

  59. Longhurst JC, Kelly AR, Conyca WJ, et al. Echocardiographic left ventricular masses in distance runners and weight lifters. J Appl Physiol 1980; 48: 154–62

    PubMed  CAS  Google Scholar 

  60. Rost R. The frontiers between physiology and pathology in the athlete’s heart: to what limits can it enlarge and beat slowly? In: Lubich T, Venerando A, Zeppilini P, editors. Sports cardiology, vol. 2. Bologna: Auto Gaggi, 1989: 187–98

    Google Scholar 

  61. Komadell L, Barth E, Kokavec M. Physiological enlargement of the heart. Bratislawa: Slovak Academy of Sciences, 1968

    Google Scholar 

  62. Molé PA. Increased contractile potential of papillary muscles from exercise trained rat hearts. Am J Physiol 1978; 234: H421–5

    PubMed  Google Scholar 

  63. Penpargkul S, Scheuer J. The effect of physical training upon the mechanical and metabolic performance of the rat heart. J Clin Invest 1970; 49: 1859–68

    Article  PubMed  CAS  Google Scholar 

  64. Laughlin MH, Tomanek RJ. Myocardial capillarity and maximal capillarity diffusions in exercise-trained dogs. J Appl Physiol 1987; 63: 1481–6

    PubMed  CAS  Google Scholar 

  65. Leon AS, Bloor CM. Effects of exercise and its cessation on the heart and its blood supply. J Physiol 1968; 245: 485–90

    Google Scholar 

  66. Petrén T, Sjöstrand T, Sylven B. Der Einfluss des Trainings auf die Häufigkeit der Capillaren in Herz und Skeletal Muskulatur. Arbeitsphysiol 1936; 9: 376–86

    Google Scholar 

  67. Tharp GD, Wagner CT. Chronic exercise and cardiac vascularization. Eur J Appl Physiol 1982; 48: 97–104

    Article  CAS  Google Scholar 

  68. Ho KW, Roy RR, Taylor JF, et al. Differential effects of running and weight-lifting on the coronary arterial tree. Med Sci Sports Exerc 1983; 15: 472–7

    PubMed  CAS  Google Scholar 

  69. Tepperman J, Pearlman D. Effects of exercise and anemia of coronary arteries of small animals as revealed by the corrosion-cast technique. Circ Res 1961; 9: 576–84

    Article  PubMed  CAS  Google Scholar 

  70. Bloor CM, Leon AS. Interaction of age and exercise on the heart and its blood supply. Lab Invest 1970; 22: 160–4

    PubMed  CAS  Google Scholar 

  71. Koerner JE, Terjung RL. Effect of physical training on coronary collateral circulation of the rat. J Appl Physiol 1982; 52: 376–87

    PubMed  CAS  Google Scholar 

  72. Penpargkul S, Repke DI, Katz AM, et al. Effect of physical training on calcium transport by rat cardiac sarcoplasmic reticulum. Circ Res 1977; 40: 134–8

    Article  PubMed  CAS  Google Scholar 

  73. Baldwin KM. Effects of chronic exercise on biochemical and functional properties of the heart. Med Sci Sports Exerc 1985; 17: 522–8

    PubMed  CAS  Google Scholar 

  74. Bhan AK, Scheuer J. Effects of physical training on cardiac myosin ATPase activity. Am J Physiol 1975; 228: 1178–82

    PubMed  CAS  Google Scholar 

  75. Baldwin KM, Fitzsimons DP, Morris GS. Effects of acute and chronic exercise on the biochemical properties of the heart. In: Lubich T, Venerando A, Zeppilli P, editors. Sports cardiology, vol. 2. Bologna: Auto Gaggi, 1989: 17–28

    Google Scholar 

  76. Barnard RJ, Duncan HW, Baldwin KM, et al. Effects of intensive training on myocardial performance and coronary blood flow. J Appl Physiol 1980; 49: 444–9

    PubMed  CAS  Google Scholar 

  77. Dowell RT, Stone HL, Sordahl LA, et al. Contractile function and myofibrillar ATPase in the exercise-trained dog heart. J Appl Physiol 1977; 43: 977–82

    PubMed  CAS  Google Scholar 

  78. Åstrand P-O, Cuddy TE, Saltin B, et al. Cardiac output during submaximal and maximal work. J Appl Physiol 1964; 19: 268–74

    PubMed  Google Scholar 

  79. Clausen JP. Effect of physical training on cardiovascular adjustments to exercise in man. Physiol Rev 1977; 57: 779–815

    PubMed  CAS  Google Scholar 

  80. Ekblom B, Hermansen L. Cardiac outout in athletes. J Appl Physiol 1968; 25: 619–25

    PubMed  CAS  Google Scholar 

  81. Barnard RJ. Long-term effects of exercise on cardiac function. Exerc Sport Sci Rev 1975; 3: 113–33

    Article  PubMed  CAS  Google Scholar 

  82. Minarovjech V. Changements de la structure des poumon causés par l’entrainement. 1er Congres Européen de Médicine Sportive; 1963 Jun 10–12. Praha: Stàtni Zdravotnicke Nakladatelstvi, 1963: 17–8

    Google Scholar 

  83. Hermansen L, Wachtlova M. Capillary density of skeletal muscle in well-trained and untrained men. J Appl Physiol 1971; 30: 860–3

    PubMed  CAS  Google Scholar 

  84. Dempsey JA. Is the lung built for exercise? Med Sci Sports Exerc 1986; 18: 143–55

    PubMed  CAS  Google Scholar 

  85. Green HJ, Phyley MJ, Smith DM, et al. Extreme endurance training and fiber type adaptation in rat diaphragm. J Appl Physiol 1989; 66: 1914–20

    PubMed  CAS  Google Scholar 

  86. Moore RL, Gollnick PD. Response of ventilatory muscles of the rat to endurance training. Pflugers Arch 1982; 392: 268–71

    Article  PubMed  CAS  Google Scholar 

  87. Gorski J, Oscai LB, Palmer WK. Hepatic lipid metabolism in exercise and training. Med Sci Sports Exerc 1990; 22: 213–21

    PubMed  CAS  Google Scholar 

  88. Szygula Z. Erythrocytic system under the influence of physical exercise and training. Sports Med 1990; 10: 181–97

    Article  PubMed  CAS  Google Scholar 

  89. Kjellberg SR, Rudhe U, Sjöstrand T. Increase of the amount of hemoglobin and blood volume in connection with physical training. Acta Physiol Scand 1949; 19: 146–51

    Article  Google Scholar 

  90. Oscai LB, Williams BT, Hertig BA. Effect of exercise on blood volume. J Appl Physiol 1968; 24: 622–4

    PubMed  CAS  Google Scholar 

  91. Åstrand P-O, Rodahl K. Textbook of work physiology: physiological basis of exercise. 3rd ed. New York: McGraw-Hill, 1986

    Google Scholar 

  92. Shephard RJ, Astrand P-O, editors. Endurance in sport. Oxford: Blackwell Scientific, 1992

    Google Scholar 

  93. Billman GE, Schwartz PJ, Stone HL. The effects of daily exercise on susceptibility to sudden cardiac death. Circulation 1984; 69: 1182–9

    Article  PubMed  CAS  Google Scholar 

  94. Holloszy JO. Metabolic consequence of endurance exercise training. In: Horton ES, Terjung RL, editors. Exercise, nutrition and energy metabolism. New York: Macmillan, 1988: 116–31

    Google Scholar 

  95. Heck H. Lactat in der Leistungsdiagnostik. Schorndorf: K. Hofmann Verlag, 1990

    Google Scholar 

  96. Kindermann W, Simon G, Keul J. The significance of the aerobic-anaerobic transition for the determination of work load intensities during endurance training. Eur J Appl Physiol 1979; 42: 25–34

    Article  CAS  Google Scholar 

  97. Mader A. Evaluation of the endurance performance of marathon runners and theoretical analysis of test results. J Sports Med Phys Fitness 1991; 31: 1–19

    PubMed  CAS  Google Scholar 

  98. Gollnick PD, Riedy M, Quintinskie JJ, et al. Differences in metabolic potential of skeletal muscle fibres and their significance for metabolic control. J Exp Biol 1985; 115: 191–9

    PubMed  CAS  Google Scholar 

  99. Alessio HM, Goldfarb AH. Lipid peroxidation and scavenger enzymes during exercise: adaptive response to training. J Appl Physiol 1988; 64: 1333–6

    PubMed  CAS  Google Scholar 

  100. Kanter MM, Hamlin RL, Unverferth DV, et al. Effect of exercise training on antioxidant enzymes and cardiotoxity of doxorubicin. J Appl Physiol 1985; 59: 1298–303

    PubMed  CAS  Google Scholar 

  101. Laughlin MH, Simpson T, Sexton WL, et al. Skeletal muscle oxidative capacity, antioxidant enzymes, and exercise training. J Appl Physiol 1990; 68: 2337–43

    PubMed  CAS  Google Scholar 

  102. Mellerowicz H. Vergleichende Untersuchungen über das Ökonomieprinzip des trainierten Kreislaufs und seine Bedeutung für die präventive und rehabilitative Medizin. Archiv Kreislauf Forsch 1956; 24: 70–176

    Article  CAS  Google Scholar 

  103. Raab W. Preventive myocardiology. Fundamentals and targets. Springfield: CC Thomas, 1970

    Google Scholar 

  104. Ekelund LG, Holmgren A. Circulatory and respiratory adaptation during long-term, non-steady state exercise in the sitting position. Acta Physiol Scand 1964; 62: 240–55

    Article  Google Scholar 

  105. Ekblom B. Effect of physical training on circulation during prolonged severe exercise. Acta Physiol Scand 1970; 78: 145–58

    Article  PubMed  CAS  Google Scholar 

  106. Viru A, Matsin T. Functional stability of adrenocortical activity during bicycle ergometer and running exercise. Biol Sport 1988; 5: 305–13

    Google Scholar 

  107. Viru A. Hormones in muscular activity, vol. 2: adaptive effect of hormones in exercise. Boca Raton: CRC Press, 1985

    Google Scholar 

  108. Kjeldsen K, Richter EA, Galbo H, et al. Training increases the concentration of H-ouabain-binding sites in rat skeletal muscle. Biochem Biophys Acta 1986; 860: 708–12

    Article  PubMed  CAS  Google Scholar 

  109. Klitgaard H, Clausen T. Increased total concentration of Na,K pumps in vastus lateralis muscle of old trained human subjects. J Appl Physiol 1989; 67: 2491–4

    PubMed  CAS  Google Scholar 

  110. Kôrge P, Roosson S, Oks M. Heart adaptation to physical exertion in relation to work duration. Acta Cardiol 1974; 29: 303–20

    PubMed  Google Scholar 

  111. Mackinnon LT. Exercise and immunology. Champaign, Ill.: Human Kinetics, 1992

    Google Scholar 

  112. Lötzerich H, Uhlenbruck G. Sport und Immunologic In: Weiss M, Rieder H, editors. Sportmedizinische Forschung. Berlin: Springer-Verlag, 1991: 117–43

    Chapter  Google Scholar 

  113. Nehlsen-Cannarella SL, Nilman DC, Balk-Lamberton AJ, et al. The effect of moderate exercise training on immune response. Med Sci Sports Exerc 1991; 23: 64–70

    PubMed  CAS  Google Scholar 

  114. Nieman DC, Tan SA, Lee JW, et al. Complement and immunoglobin levels in athletes and sedentary controls. Int J Sports Med 1985; 10: 124–8

    Article  Google Scholar 

  115. Pedersen BK, Tvede N, Christensen L̇D, et al. Natural killer cell activity in peripheral blood of highly trained and untrained persons. Int J Sports Med 1989; 10: 129–31

    Article  PubMed  CAS  Google Scholar 

  116. Tomasi TB, Trudeau FB, Czerwinski D, et al. Immune parameters in athletes before and after strenuous exercise. J Clin Immunol 1982; 2: 173–8

    Article  PubMed  CAS  Google Scholar 

  117. Nieman DC. Exercise, upper respiratory tract infection, and the immune system. Med Sci Sports Exerc 1994; 26: 128–39

    Article  PubMed  CAS  Google Scholar 

  118. Surkina ID, Gotovtseva EP. The immune state of female athletes and its correlation with menstrual functions and conditions of sports activities. Sports Training Med Rehab 1989; 1: 85–8

    Article  Google Scholar 

  119. Chogovadze AV, Smirnova YI, Shkrebko AN. Immunological reactivity of swimmers during the preparatory and competition period. Sports Training Med Rehab 1988; 1: 41–3

    Article  Google Scholar 

  120. Levando VA, Suzdal’nitski RS, Pershin BB, et al. Study of secretory and antiviral immunity in sportsmen. Sports Training Med Rehab 1988; 1: 49–52

    Article  Google Scholar 

  121. Pershin BB, Kuzmin SN, Suzdal’nitski RS, et al. Reserve potential of immunity. Sports Training Med Rehab 1988; 1: 53–60

    Article  Google Scholar 

  122. Blair SN, Kohl HW, Paffenbarger RS, et al. Physical fitness and all-cause mortality: a prospective study of healthy men and women. JAMA 1989; 262: 2395–401

    Article  PubMed  CAS  Google Scholar 

  123. Eckert HM, Montoye HJ, editors. Exercise and health. Toronto: McClelland & Steward, 1986

    Google Scholar 

  124. Paffenbarger RS, Hyde RT, Wing AI, et al. Physical activity, all-cause mortality and longevity of college athletes. N Engl J Med 1986; 314: 605–13

    Article  PubMed  Google Scholar 

  125. Roberts JA. Viral illnesses and sports performance. Sports Med 1986; 3: 296–303

    Article  Google Scholar 

  126. Simon HB. Exercise and infection. Physician Sportsmed 1987; 15: 135–41

    Google Scholar 

  127. Pedersen BK, Tvede N, Hansen FR, et al. Modulation of natura killer cell activity in peripheral blood by physical exercise. Scand J Immunol 1988; 27: 673–8

    Article  PubMed  CAS  Google Scholar 

  128. Frisch RE, Wyshak G, Albright NL, et al. Lower prevalence of non-reproductive system cancers among female former college athletes. Med Sci Sports Exerc 1989; 21: 250–3

    PubMed  CAS  Google Scholar 

  129. Frisch RE, Wyshak G, Albright NL, et al. Lower prevalence of breast cancer and cancer of the reproductive system among former college athletes compared to non-athletes. Br J Cancer 1985; 52: 885–91

    Article  PubMed  CAS  Google Scholar 

  130. Kohl HW, LaParte PE, Blair SN. Physical activity and cancer: an epidemiological perspective. Sports Med 1988; 6: 222–37

    Article  PubMed  CAS  Google Scholar 

  131. Shephard RJ. Physical activity and cancer. Int J Sports Med 1990; 11: 413–20

    Article  PubMed  CAS  Google Scholar 

  132. Uhlenbruck G, Order U. Perspectiven, Probleme und Prioritäten: Sportimmunologie — die nächsten 75 Jahre? Dtsch Z Sportmed 1987; 38: 40–7

    Google Scholar 

  133. Hoffman-Goetz L. Exercise, natural immunity, and tumor metastasis. Med Sci Sports Exerc 1994; 26: 157–63

    Article  PubMed  CAS  Google Scholar 

  134. Mackinnon LT. Exercise and natural killer cells: what is the relationship? Sports Med 1989; 7: 141–9

    Article  PubMed  CAS  Google Scholar 

  135. Lötzerich H, Fehr H-G, Appel H-J. Potentiation of cytostatic but not cytolytic activity of murine macrophages after running stress. Int J Sports Med 1990; 11: 61–5

    Article  PubMed  Google Scholar 

  136. Jenkins RR. Free radical chemistry: relationship to exercise. Sports Med 1988; 5: 156–70

    Article  PubMed  CAS  Google Scholar 

  137. Booth FW, Thomason DB. Molecular and cellular adaptation of muscles in response to exercise: perspectives of various models. Physiol Rev 1991; 71: 541–85

    PubMed  CAS  Google Scholar 

  138. Mader AA. A transcription-translation activation feedback circuit as a function of protein degradation, with the quality of protein mass adaptation related to the average functional load. J Theor Biol 1988; 134: 135–57

    Article  PubMed  CAS  Google Scholar 

  139. Viru A. The mechanism of training effects: a hypothesis. Int J Sports Med 1984; 5: 219–27

    Article  PubMed  CAS  Google Scholar 

  140. Zhimkin NV. Significance of increased muscular activity on improved function of human organism in contemporary society. In: Geselevich VA, editor. Civilization, sport and heart. Moscow: Fizkultura i Sport, 1968: 5–11

    Google Scholar 

  141. Viru A, Toode K, Eller A. Adipocyte responses to adrenaline and insulin in active and former sportsmen. Eur J Appl Physiol 1992; 64: 345–9

    Article  CAS  Google Scholar 

  142. Dufaux B, Assmann G, Hollmann W. Plasma lipoprotein and physical activity: a review. Int J Sports Med 1982; 3: 123–36

    Article  PubMed  CAS  Google Scholar 

  143. Grimby G, Wilhelmsen L, Bjorntorp P, et al. Habitual physical activity: aerobic power and blood lipids. In: Pernow B, Saltin B, editors. Muscle metabolism during exercise. New York: Plenum, 1971: 469–81

    Chapter  Google Scholar 

  144. Tran ZV, Weltman A, Glass GV, et al. The effect of exercise on blood lipids and lipoproteins: a meta-analysis of studies. Med Sci Sports Exerc 1989; 15: 393–402

    Google Scholar 

  145. Wood PD, Haskell Wl. The effect of exercise on plasma high density lipoproteins. Lipids 1979; 14: 417–27

    Article  PubMed  CAS  Google Scholar 

  146. Marti B, Suter E, Riesen WF, et al. Effects of long-term, self-monitored exercise on the serum lipoprotein and apolipoprotein profile in middle-aged men. Atherosclerosis 1990; 21: 19–31

    Article  Google Scholar 

  147. Sasaki J, Tanabe Y, Tanaka H, et al. Elevated levels of HDL2-cholesterol and apo A-l in national class Japanese male marathon runners. Atherosclerosis 1988; 70: 175–7

    Article  PubMed  CAS  Google Scholar 

  148. Marniemi J, Peltonen P, Vuori I, et al. Lipoprotein-lipase of human post-heparin plasma and adipose-tissue in relation to physical training. Acta Physiol Scand 1980; 110: 131–5

    Article  PubMed  CAS  Google Scholar 

  149. Nikkilä EA, Taskinen MR, Rehunen S, et al. Lipoprotein lipase activity in adipose tissue and skeletal muscle of runners: relation to serum lipoproteins. Metabolism 1978; 27: 1662–7

    Article  Google Scholar 

  150. Gollnick PD. Chronic effect of exercise on liver cholesterol of normal and hypercholesteremic rats. Am J Physiol 1963; 205: 453–6

    PubMed  CAS  Google Scholar 

  151. Hebbelnick M, Casier H. Effect of muscular exercise on the metabolism of 4-C14 labelled cholesterol in mice. IntZ Angew Physiol 1966; 22: 185–9

    Google Scholar 

  152. Malinow MR, McLaughlin P, Perley Am, et al. Hepatic and adrenal degradation of cholesterol during rest and muscular activity. J Appl Physiol 1970; 29: 323–7

    PubMed  CAS  Google Scholar 

  153. Blair SN, Oberman A. Epidemiologic analysis of coronary heart disease and exercise. Cardiol Clinics 1987; 5: 271–83

    CAS  Google Scholar 

  154. Fröhlicher V, Battler A, McKernan DM. Physical activity and heart disease. Cardiology 1980; 65: 153–90

    Article  Google Scholar 

  155. Leon AS, Blackbourn H. The relationship of physical activity to coronary heart disease and life expectancy. Ann N Y Acad Sci 1977; 301: 561–78

    Article  PubMed  CAS  Google Scholar 

  156. Powell KE, Thompson PD, Casperson CJ, et al. Physical activity and the incidence of coronary heart disease. Annu Rev Public Health 1987; 8: 253–87

    Article  PubMed  CAS  Google Scholar 

  157. Shephard RJ. Ischemic heart disease and exercise. London: Croom Helm, 1981

    Google Scholar 

  158. Tipton CT. Exercise, training and hypertension: an update. Exerc Sport Sci Rev 1991; 19: 447–505

    Article  PubMed  CAS  Google Scholar 

  159. Drzhevetskaya I, Limanski NN. Thyrocalcitonin activity and calcium level in plasma during muscular activity. Sechenov Physiol J USSR 1978; 64: 1498–500

    CAS  Google Scholar 

  160. Suominen H. Osteoporosis. In: Oja P, Telama R, editors. Sport for all. Amsterdam: Elsevier Science, 1991: 325–31

    Google Scholar 

  161. Fleck SJ. Cardiovascular adaptation to resistance training. Med Sci Sports Exerc 1988; 20: 5146–51

    Google Scholar 

  162. Ikaheimo MJ, Palatsi IJ, Takkunen JT. Noninvasive evaluation of the athletic heart: sprinters versus endurance runners. Am J Cardiol 1979; 44: 24–30

    Article  PubMed  CAS  Google Scholar 

  163. Hurley BF. Effect of resistive training on lipoprotein-lipid profiles: a comparison to aerobic exercise training. Med Sci Sports Exerc 1989; 21: 689–93

    PubMed  CAS  Google Scholar 

  164. Goldberg AP. Aerobic and resistive exercise modify risk factors for coronary heart disease. Med Sci Sports Exerc 1989; 21: 669–74

    PubMed  CAS  Google Scholar 

  165. Hurley BF, Hagberg JM, Goldberg AP, et al. Resistive training can reduce coronary risk factors without altering V̇O2max or percent of body fat. Med Sei Sports Exerc 1988; 20: 150–4

    Article  CAS  Google Scholar 

  166. American College of Sports Medicine. Position statement of the recommended quality and quantity of exercise for developing and maintaining fitness in healthy adults. Med Sci Sports 1978; 10: 7–10

    Google Scholar 

  167. Cooper KH. Aerobics. New York: Evans, 1998

    Google Scholar 

  168. Shepro D, Knuttgen HG. Complete conditioning: the no-nonsense guide to fitness and good health. Reading: Wesley, 1976

    Google Scholar 

  169. Crews D, Landers DM. A meta-analytic review of aerobic fitness and reactivity to psychosocial stressors. Med Sci Sports Exerc 1987; 19 Suppl.: 5114–20

    Google Scholar 

  170. Petruzzello SJ, Landers DM, Hatfield BD, et al. A meta-analysis on the anxiety-reducing effects of acute and chronic exercise: outcomes and mechanisms. Sports Med 1991; 11: 143–82

    Article  PubMed  CAS  Google Scholar 

  171. North TC, McCullagh P, Tran ZV. Effect of exercise on depression. Exerc Sports Sci Rev 1990; 18: 379–415

    Article  CAS  Google Scholar 

  172. Oja P. Elements and assessment of fitness in sport for all. In Oja P, Telama R, editors. Sport for all. Amsterdam: Elsevier Science, 1991: 103–10

    Google Scholar 

  173. Jürimäe T, Neissaar I, Viru A. The effect of similar aerobic gymnastics and running programs on physical working capacity and blood lipids and lipoproteins in female university students. Hungarian Rev Sports Med 1985; 26: 251–5

    Google Scholar 

  174. Williford HN, Scharff-Olson M, Blessing DL. The physiological effects of aerobic dance: a review. Sports Med 1989; 8: 335–45

    Article  PubMed  CAS  Google Scholar 

  175. Jürimäe T, Neissaar I, Viru A. The effect of rhythmic gymnastics programs of various intensity on the working capacity and blood levels of lipids and lipoproteins in female students. Sports Training Med Rehab 1989; 1: 93–6

    Article  Google Scholar 

  176. Jürimäe T, Viru A, Viru E, et al. Action of various regimes of running training on physical fitness, blood plasma lipids and lipoproteins in untrained female and male university students. Fiziol Cheloveka (Moscow) 1985; 11: 945–51

    Google Scholar 

  177. Deuser E. Die Gesundheit des Sportlers. Düsseldorf-Wien: Econ Verlag, 1977

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Viru, A., Smirnova, T. Health Promotion and Exercise Training. Sports Med 19, 123–136 (1995). https://doi.org/10.2165/00007256-199519020-00004

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00007256-199519020-00004

Keywords

Navigation