Skip to main content

Preventive Cardiology: The Effects of Exercise

  • Chapter
  • First Online:
Coronary Artery Disease

Abstract

Physical adaptations to dynamic exercise (i.e., exercise training) lead to increased aerobic and strength capacities (including cardiovascular reserve, endurance and velocity of movement) (Noakes et al., Clin Sports Med 3(2):527–543, 1984). These attributes are relevant in vigorous athletes, who in addition to high performance also tend to have better metabolism and health, as well as for older adults who compared to age-matched sedentary adults enjoy better health, greater independence, and better quality of life. Exercise regimens are best tailored to the needs of individual patients, with varying emphasis on strength vs. aerobic, and with different intensities/modes based on clinical contexts.

Since the 1950s, an extensive literature has described the benefits and risks of exercise, including reports by the American Heart Association (Fletcher et al., Circulation 86(1):340–344, 1992) and the International Society and Federation of Cardiology (Bijnen et al., J Int Soc Federation Cardiol 2:5–6, 1992). The aggregate data conveys a strong case that a sedentary lifestyle is detrimental to health, and creates high a risk for cardiovascular disease. The weight of evidence even led to a Surgeon General’s report which made clear and explicit recommendations regarding physical activity (Department of Health and Human Services. Physical activity and health: a report of the Surgeon General. Atlanta: National Center for Chronic Disease Prevention and Health Promotion; 1996). Several major agencies and organizations including the National Institutes of Health, the Centers for Disease Control and Prevention, the American College of Sports Medicine, and the American Heart Association have advanced related recommendations that all adults should exercise with moderate-intensity for at least 30 min on most and preferably all day of the week (Department of Health and Human Services. Physical activity and health: a report of the Surgeon General. Atlanta: National Center for Chronic Disease Prevention and Health Promotion; 1996; Physical activity and cardiovascular health. NIH Consensus Development Panel on Physical Activity and Cardiovascular Health JAMA 276(3):241–246, 1996; Pate et al., JAMA 273(5):402–407, 1995; Thompson et al. Circulation 107(24):3109–3116, 2003). Nonetheless, the majority of adults do not attain the recommended levels of exercise and they are not routinely counseled on the important health benefits of regular physical activity (Prevalence of physical activity, including lifestyle activities among adults – United States, 2000–2001 MMWR Morb Mortal Wkly Rep 52(32):764–769, 2003; Wee et al., JAMA 282(16):1583–1588, 1999).

This chapter explores the role of occupational and recreational physical activity on morbidity and mortality from coronary heart disease (CHD). The first section will focus on healthy individuals, i.e., primary prevention, and will discuss epidemiologic evidence supporting the practice of regular exercise. The second section will discuss secondary prevention, for patients who already have had some manifestation of CHD such as angina pectoris or myocardial infarction or who have undergone revascularization. Finally, the third section will provide a pathophysiologic framework of the possible mechanisms for the beneficial effects of exercise training.

Physical activity, exercise training, and physical fitness have distinct definitions (Thompson et al., Circulation 107(24):3109–3116, 2003; Caspersen et al., Public Health Rep 100(2):126–131, 1985). Physical activity is any bodily movement produced by skeletal muscles that results in energy expenditure, including occupational, athletic, and other activities. Exercise training refers more specifically to activity that is planned, structured, and purposeful with the intent of developing or maintaining physical fitness (Caspersen et al., Public Health Rep 100(2):126–131, 1985). Physical fitness is a set of measurable health-related attributes, including muscle strength, flexibility, body composition, and cardiorespiratory power and endurance. While all are important facets of health, only a minority of adults of any age meet current recommendations for physical activity, exercise training, and/or achieve “optimal” physical fitness (Hansen et al., Med Sci Sports Exerc 44(2):266–272, 2012).

In this chapter, we initially focus on the distinctive health benefits of endurance and strength exercise training. Endurance or “aerobic” exercise includes activities with energy demands that are met primarily by oxidative metabolism. Strength exercise is specialized to increase muscle mass and anaerobic endurance. Strength training also can facilitate aerobic performance as it has the potential to moderate muscle atrophy (sarcopenia) that otherwise occurs with aging, deconditioning, and multimorbidity. Increasing muscle mass with strength training also has benefit of increasing weight loss by raising metabolism and caloric expenditure. Therefore, the combination of aerobic and strength training is often optimal, especially for achieving fitness goals of elderly, obese and/or deconditioned adults who benefit particularly from increased muscle mass as well as aerobic training effects (Brown and Holloszy Aging (Milano) 5(6):427–434, 1993; McAuley J Behav Med 16(1):103–113, 1993). While there is conceptually value for exercise regimens that are longer and more intense, this is often not feasible for adults who are frail, deconditioned, or those who may simply be averse to exercise. However, even small amounts of exercise have value; research shows that as little as 15 min of low intensity exercise may be beneficial (Wen et al., Lancet 378(9798):1244–1253, 2011). Therefore, doing any exercise is better than no exercise, particularly because exercise-induced strength and aerobic capacities often facilitate greater physical activity in addition to exercise.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Noakes TD, Opie LH, Rose AG. Marathon running and immunity to coronary heart disease: fact versus fiction. Clin Sports Med. 1984;3(2):527–43.

    CAS  PubMed  Google Scholar 

  2. Fletcher GF, et al. Statement on exercise. Benefits and recommendations for physical activity programs for all Americans. A statement for health professionals by the Committee on Exercise and Cardiac Rehabilitation of the Council on Clinical Cardiology, American Heart association. Circulation. 1992;86(1):340–4.

    CAS  PubMed  Google Scholar 

  3. Bijnen FC, Mosterd WL. Statement of the International Society and Federation of Cardiology, Physical inactivity: a risk factor for coronary heart disease. J Int Soc Federation Cardiol. 1992;2:5–6.

    Google Scholar 

  4. Department of Health and Human Services. Physical activity and health: a report of the Surgeon General. Atlanta: National Center for Chronic Disease Prevention and Health Promotion; 1996.

    Google Scholar 

  5. Physical activity and cardiovascular health. NIH Consensus Development Panel on Physical Activity and Cardiovascular Health. JAMA. 1996; 276(3):241–6.

    Google Scholar 

  6. Pate RR, et al. Physical activity and public health. A recommendation from the Centers for Disease Control and Prevention and the American College of Sports Medicine. JAMA. 1995;273(5):402–7.

    CAS  PubMed  Google Scholar 

  7. Thompson PD, et al. Exercise and physical activity in the prevention and treatment of atherosclerotic cardiovascular disease: a statement from the Council on Clinical Cardiology (Subcommittee on Exercise, Rehabilitation, and Prevention) and the Council on Nutrition, Physical Activity, and Metabolism (Subcommittee on Physical Activity). Circulation. 2003;107(24):3109–16.

    PubMed  Google Scholar 

  8. Prevalence of physical activity, including lifestyle activities among adults – United States, 2000–2001. MMWR Morb Mortal Wkly Rep. 2003;52(32):764–9.

    Google Scholar 

  9. Wee CC, et al. Physician counseling about exercise. JAMA. 1999;282(16):1583–8.

    CAS  PubMed  Google Scholar 

  10. Caspersen CJ, Powell KE, Christenson GM. Physical activity, exercise, and physical fitness: definitions and distinctions for health-related research. Public Health Rep. 1985;100(2):126–31.

    PubMed Central  CAS  PubMed  Google Scholar 

  11. Hansen BH, et al. Accelerometer-determined physical activity in adults and older people. Med Sci Sports Exerc. 2012;44(2):266–72.

    PubMed  Google Scholar 

  12. Brown M, Holloszy JO. Effects of walking, jogging and cycling on strength, flexibility, speed and balance in 60- to 72-year olds. Aging (Milano). 1993;5(6):427–34.

    CAS  Google Scholar 

  13. McAuley E. Self-efficacy and the maintenance of exercise participation in older adults. J Behav Med. 1993;16(1):103–13.

    CAS  PubMed  Google Scholar 

  14. Wen CP, et al. Minimum amount of physical activity for reduced mortality and extended life expectancy: a prospective cohort study. Lancet. 2011;378(9798):1244–53.

    PubMed  Google Scholar 

  15. Hakim AA, et al. Effects of walking on coronary heart disease in elderly men: the Honolulu Heart Program. Circulation. 1999;100(1):9–13.

    CAS  PubMed  Google Scholar 

  16. Kushi LH, et al. Physical activity and mortality in postmenopausal women. JAMA. 1997;277(16):1287–92.

    CAS  PubMed  Google Scholar 

  17. LaCroix AZ, et al. Does walking decrease the risk of cardiovascular disease hospitalizations and death in older adults? J Am Geriatr Soc. 1996;44(2):113–20.

    CAS  PubMed  Google Scholar 

  18. Lakka TA, et al. Relation of leisure-time physical activity and cardiorespiratory fitness to the risk of acute myocardial infarction. N Engl J Med. 1994;330(22):1549–54.

    CAS  PubMed  Google Scholar 

  19. Leon AS, et al. Leisure-time physical activity levels and risk of coronary heart disease and death. The Multiple Risk Factor Intervention Trial. JAMA. 1987;258(17):2388–95.

    CAS  PubMed  Google Scholar 

  20. Leon AS, Connett J. Physical activity and 10.5 year mortality in the Multiple Risk Factor Intervention Trial (MRFIT). Int J Epidemiol. 1991;20(3):690–7.

    CAS  PubMed  Google Scholar 

  21. Manson JE, et al. A prospective study of walking as compared with vigorous exercise in the prevention of coronary heart disease in women. N Engl J Med. 1999;341(9):650–8.

    CAS  PubMed  Google Scholar 

  22. Manson JE, et al. Walking compared with vigorous exercise for the prevention of cardiovascular events in women. N Engl J Med. 2002;347(10):716–25.

    PubMed  Google Scholar 

  23. Mensink GB, et al. Physical activity and its association with cardiovascular risk factors and mortality. Epidemiology. 1996;7(4):391–7.

    CAS  PubMed  Google Scholar 

  24. Morris JN, et al. Exercise in leisure time: coronary attack and death rates. Br Heart J. 1990;63(6):325–34.

    PubMed Central  CAS  PubMed  Google Scholar 

  25. Paffenbarger Jr RS, et al. Physical activity, all-cause mortality, and longevity of college alumni. N Engl J Med. 1986;314(10):605–13.

    PubMed  Google Scholar 

  26. Shaper AG, Wannamethee G, Weatherall R. Physical activity and ischaemic heart disease in middle-aged British men. Br Heart J. 1991;66(5):384–94.

    PubMed Central  CAS  PubMed  Google Scholar 

  27. Tanasescu M, et al. Exercise type and intensity in relation to coronary heart disease in men. JAMA. 2002;288(16):1994–2000.

    PubMed  Google Scholar 

  28. Wannamethee SG, Shaper AG, Walker M. Changes in physical activity, mortality, and incidence of coronary heart disease in older men. Lancet. 1998;351(9116):1603–8.

    CAS  PubMed  Google Scholar 

  29. Wessel TR, et al. Relationship of physical fitness vs body mass index with coronary artery disease and cardiovascular events in women. JAMA. 2004;292(10):1179–87.

    CAS  PubMed  Google Scholar 

  30. Chobanian AV, et al. The Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure: the JNC 7 report. JAMA. 2003;289(19):2560–72.

    CAS  PubMed  Google Scholar 

  31. Whelton SP, et al. Effect of aerobic exercise on blood pressure: a meta-analysis of randomized, controlled trials. Ann Intern Med. 2002;136(7):493–503.

    PubMed  Google Scholar 

  32. Fagard RH. Exercise characteristics and the blood pressure response to dynamic physical training. Med Sci Sports Exerc. 2001;33(6 Suppl):S484–92; discussion S493–4.

    CAS  PubMed  Google Scholar 

  33. Cook NR, et al. Implications of small reductions in diastolic blood pressure for primary prevention. Arch Intern Med. 1995;155(7):701–9.

    CAS  PubMed  Google Scholar 

  34. Martin 3rd WH, et al. Cardiovascular adaptations to intense swim training in sedentary middle-aged men and women. Circulation. 1987;75(2):323–30.

    PubMed  Google Scholar 

  35. Kelley GA, Kelley KS. Progressive resistance exercise and resting blood pressure: a meta-analysis of randomized controlled trials. Hypertension. 2000;35(3):838–43.

    CAS  PubMed  Google Scholar 

  36. Rebholz CM, et al. Physical activity reduces salt sensitivity of blood pressure: the Genetic Epidemiology Network of Salt Sensitivity Study. Am J Epidemiol. 2012;176 Suppl 7:S106–13.

    PubMed Central  PubMed  Google Scholar 

  37. Gordon NF, Scott CB, Levine BD. Comparison of single versus multiple lifestyle interventions: are the antihypertensive effects of exercise training and diet-induced weight loss additive? Am J Cardiol. 1997;79(6):763–7.

    CAS  PubMed  Google Scholar 

  38. Blair SN, et al. Physical fitness and incidence of hypertension in healthy normotensive men and women. JAMA. 1984;252(4):487–90.

    CAS  PubMed  Google Scholar 

  39. Tran ZV, Weltman A. Differential effects of exercise on serum lipid and lipoprotein levels seen with changes in body weight. A meta-analysis. JAMA. 1985;254(7):919–24.

    CAS  PubMed  Google Scholar 

  40. Wood PD, et al. Changes in plasma lipids and lipoproteins in overweight men during weight loss through dieting as compared with exercise. N Engl J Med. 1988;319(18):1173–9.

    CAS  PubMed  Google Scholar 

  41. Wood PD, et al. The effects on plasma lipoproteins of a prudent weight-reducing diet, with or without exercise, in overweight men and women. N Engl J Med. 1991;325(7):461–6.

    CAS  PubMed  Google Scholar 

  42. Stefanick ML, et al. Effects of diet and exercise in men and postmenopausal women with low levels of HDL cholesterol and high levels of LDL cholesterol. N Engl J Med. 1998;339(1):12–20.

    CAS  PubMed  Google Scholar 

  43. Krauss RM. Regulation of high density lipoprotein levels. Med Clin North Am. 1982;66(2):403–30.

    CAS  PubMed  Google Scholar 

  44. Fletcher GF, et al. Exercise standards for testing and training: a statement for healthcare professionals from the American Heart Association. Circulation. 2001;104(14):1694–740.

    CAS  PubMed  Google Scholar 

  45. Leon AS, et al. Blood lipid response to 20 weeks of supervised exercise in a large biracial population: the HERITAGE Family Study. Metabolism. 2000;49(4):513–20.

    CAS  PubMed  Google Scholar 

  46. Gyntelberg F, et al. Plasma triglyceride lowering by exercise despite increased food intake in patients with type IV hyperlipoproteinemia. Am J Clin Nutr. 1977;30(5):716–20.

    CAS  PubMed  Google Scholar 

  47. Vanninen E, et al. Habitual physical activity, aerobic capacity and metabolic control in patients with newly-diagnosed type 2 (non-insulin-dependent) diabetes mellitus: effect of 1-year diet and exercise intervention. Diabetologia. 1992;35(4):340–6.

    CAS  PubMed  Google Scholar 

  48. Blake GJ, et al. Low-density lipoprotein particle concentration and size as determined by nuclear magnetic resonance spectroscopy as predictors of cardiovascular disease in women. Circulation. 2002;106(15):1930–7.

    CAS  PubMed  Google Scholar 

  49. Campos H, et al. Low-density lipoprotein size, pravastatin treatment, and coronary events. JAMA. 2001;286(12):1468–74.

    CAS  PubMed  Google Scholar 

  50. Gardner CD, Fortmann SP, Krauss RM. Association of small low-density lipoprotein particles with the incidence of coronary artery disease in men and women. JAMA. 1996;276(11):875–81.

    CAS  PubMed  Google Scholar 

  51. Lamarche B, et al. Small, dense low-density lipoprotein particles as a predictor of the risk of ischemic heart disease in men. Prospective results from the Quebec Cardiovascular Study. Circulation. 1997;95(1):69–75.

    CAS  PubMed  Google Scholar 

  52. Kraus WE, et al. Effects of the amount and intensity of exercise on plasma lipoproteins. N Engl J Med. 2002;347(19):1483–92.

    CAS  PubMed  Google Scholar 

  53. Herbert PN, et al. High-density lipoprotein metabolism in runners and sedentary men. JAMA. 1984;252(8):1034–7.

    CAS  PubMed  Google Scholar 

  54. Devlin JT, Horton ES. Effects of prior high-intensity exercise on glucose metabolism in normal and insulin-resistant men. Diabetes. 1985;34(10):973–9.

    CAS  PubMed  Google Scholar 

  55. Dela F, et al. Physical training increases muscle GLUT4 protein and mRNA in patients with NIDDM. Diabetes. 1994;43(7):862–5.

    CAS  PubMed  Google Scholar 

  56. Koval JA, et al. Regulation of hexokinase II activity and expression in human muscle by moderate exercise. Am J Physiol. 1998;274(2 Pt 1):E304–8.

    CAS  PubMed  Google Scholar 

  57. Ebeling P, et al. Mechanism of enhanced insulin sensitivity in athletes. Increased blood flow, muscle glucose transport protein (GLUT-4) concentration, and glycogen synthase activity. J Clin Invest. 1993;92(4):1623–31.

    PubMed Central  CAS  PubMed  Google Scholar 

  58. Mandroukas K, et al. Physical training in obese women. Effects of muscle morphology, biochemistry and function. Eur J Appl Physiol Occup Physiol. 1984;52(4):355–61.

    CAS  PubMed  Google Scholar 

  59. Mayer-Davis EJ, et al. Intensity and amount of physical activity in relation to insulin sensitivity: the Insulin Resistance Atherosclerosis Study. JAMA. 1998;279(9):669–74.

    CAS  PubMed  Google Scholar 

  60. Thompson PD, et al. The acute versus the chronic response to exercise. Med Sci Sports Exerc. 2001;33(6 Suppl):S438–45; discussion S452–3.

    CAS  PubMed  Google Scholar 

  61. Boule NG, et al. Effects of exercise on glycemic control and body mass in type 2 diabetes mellitus: a meta-analysis of controlled clinical trials. JAMA. 2001;286(10):1218–27.

    CAS  PubMed  Google Scholar 

  62. Rippe JM, Hess S. The role of physical activity in the prevention and management of obesity. J Am Diet Assoc. 1998;98(10 Suppl 2):S31–8.

    CAS  PubMed  Google Scholar 

  63. Ching PL, et al. Activity level and risk of overweight in male health professionals. Am J Public Health. 1996;86(1):25–30.

    PubMed Central  CAS  PubMed  Google Scholar 

  64. Miller WC, Koceja DM, Hamilton EJ. A meta-analysis of the past 25 years of weight loss research using diet, exercise or diet plus exercise intervention. Int J Obes Relat Metab Disord. 1997;21(10):941–7.

    CAS  PubMed  Google Scholar 

  65. Williamson DF, et al. Recreational physical activity and ten-year weight change in a US national cohort. Int J Obes Relat Metab Disord. 1993;17(5):279–86.

    CAS  PubMed  Google Scholar 

  66. Schoeller DA, Shay K, Kushner RF. How much physical activity is needed to minimize weight gain in previously obese women? Am J Clin Nutr. 1997;66(3):551–6.

    CAS  PubMed  Google Scholar 

  67. Seidell JC, et al. Body fat distribution in relation to physical activity and smoking habits in 38-year-old European men. The European Fat Distribution Study. Am J Epidemiol. 1991;133(3):257–65.

    CAS  PubMed  Google Scholar 

  68. Troisi RJ, et al. Cigarette smoking, dietary intake, and physical activity: effects on body fat distribution – the Normative Aging Study. Am J Clin Nutr. 1991;53(5):1104–11.

    CAS  PubMed  Google Scholar 

  69. U.S. Department of Health and Human Services and U.S. Department of Agriculture. Dietary guidelines for Americans. Washington, D.C: U.S. Government Printing Office; 2005.

    Google Scholar 

  70. Donnelly JE, et al. American College of Sports Medicine Position Stand. Appropriate physical activity intervention strategies for weight loss and prevention of weight regain for adults. Med Sci Sports Exerc. 2009;41(2):459–71.

    PubMed  Google Scholar 

  71. Broeder CE, et al. The effects of either high-intensity resistance or endurance training on resting metabolic rate. Am J Clin Nutr. 1992;55(4):802–10.

    CAS  PubMed  Google Scholar 

  72. Ryan AS, et al. Resistive training increases fat-free mass and maintains RMR despite weight loss in postmenopausal women. J Appl Physiol. 1995;79(3):818–23.

    CAS  PubMed  Google Scholar 

  73. Ross R, Rissanen J. Mobilization of visceral and subcutaneous adipose tissue in response to energy restriction and exercise. Am J Clin Nutr. 1994;60(5):695–703.

    CAS  PubMed  Google Scholar 

  74. Ross R, et al. Influence of diet and exercise on skeletal muscle and visceral adipose tissue in men. J Appl Physiol. 1996;81(6):2445–55.

    CAS  PubMed  Google Scholar 

  75. Ades PA, et al. Weight training improves walking endurance in healthy elderly persons. Ann Intern Med. 1996;124(6):568–72.

    CAS  PubMed  Google Scholar 

  76. Weinsier RL, et al. Free-living activity energy expenditure in women successful and unsuccessful at maintaining a normal body weight. Am J Clin Nutr. 2002;75(3):499–504.

    CAS  PubMed  Google Scholar 

  77. Mora S, et al. Physical activity and reduced risk of cardiovascular events: potential mediating mechanisms. Circulation. 2007;116(19):2110–8.

    PubMed Central  CAS  PubMed  Google Scholar 

  78. Yudkin JS, et al. C-reactive protein in healthy subjects: associations with obesity, insulin resistance, and endothelial dysfunction: a potential role for cytokines originating from adipose tissue? Arterioscler Thromb Vasc Biol. 1999;19(4):972–8.

    CAS  PubMed  Google Scholar 

  79. Festa A, et al. Chronic subclinical inflammation as part of the insulin resistance syndrome: the Insulin Resistance Atherosclerosis Study (IRAS). Circulation. 2000;102(1):42–7.

    CAS  PubMed  Google Scholar 

  80. Kuller LH, et al. Relation of C-reactive protein and coronary heart disease in the MRFIT nested case–control study. Multiple Risk Factor Intervention Trial. Am J Epidemiol. 1996;144(6):537–47.

    CAS  PubMed  Google Scholar 

  81. Ridker PM, et al. C-reactive protein, the metabolic syndrome, and risk of incident cardiovascular events: an 8-year follow-up of 14 719 initially healthy American women. Circulation. 2003;107(3):391–7.

    PubMed  Google Scholar 

  82. Ridker PM, Haughie P. Prospective studies of C-reactive protein as a risk factor for cardiovascular disease. J Investig Med. 1998;46(8):391–5.

    CAS  PubMed  Google Scholar 

  83. Ridker PM, et al. C-reactive protein and other markers of inflammation in the prediction of cardiovascular disease in women. N Engl J Med. 2000;342(12):836–43.

    CAS  PubMed  Google Scholar 

  84. Rost NS, et al. Plasma concentration of C-reactive protein and risk of ischemic stroke and transient ischemic attack: the Framingham study. Stroke. 2001;32(11):2575–9.

    CAS  PubMed  Google Scholar 

  85. Albert MA, Glynn RJ, Ridker PM. Effect of physical activity on serum C-reactive protein. Am J Cardiol. 2004;93(2):221–5.

    CAS  PubMed  Google Scholar 

  86. Ford ES. Does exercise reduce inflammation? Physical activity and C-reactive protein among U.S. adults. Epidemiology. 2002;13(5):561–8.

    PubMed  Google Scholar 

  87. Milani RV, Lavie CJ, Mehra MR. Reduction in C-reactive protein through cardiac rehabilitation and exercise training. J Am Coll Cardiol. 2004;43(6):1056–61.

    CAS  PubMed  Google Scholar 

  88. Pischon T, et al. Leisure-time physical activity and reduced plasma levels of obesity-related inflammatory markers. Obes Res. 2003;11(9):1055–64.

    CAS  PubMed  Google Scholar 

  89. Pitsavos C, et al. Association of leisure-time physical activity on inflammation markers (C-reactive protein, white cell blood count, serum amyloid A, and fibrinogen) in healthy subjects (from the ATTICA study). Am J Cardiol. 2003;91(3):368–70.

    CAS  PubMed  Google Scholar 

  90. Rauramaa R, et al. Effects of aerobic physical exercise on inflammation and atherosclerosis in men: the DNASCO Study: a six-year randomized, controlled trial. Ann Intern Med. 2004;140(12):1007–14.

    PubMed  Google Scholar 

  91. Verdaet D, et al. Association between leisure time physical activity and markers of chronic inflammation related to coronary heart disease. Atherosclerosis. 2004;176(2):303–10.

    CAS  PubMed  Google Scholar 

  92. Wannamethee SG, et al. Physical activity and hemostatic and inflammatory variables in elderly men. Circulation. 2002;105(15):1785–90.

    PubMed  Google Scholar 

  93. Mora S, et al. Association of physical activity and body mass index with novel and traditional cardiovascular biomarkers in women. JAMA. 2006;295(12):1412–9.

    CAS  PubMed  Google Scholar 

  94. Rawson ES, et al. Body mass index, but not physical activity, is associated with C-reactive protein. Med Sci Sports Exerc. 2003;35(7):1160–6.

    CAS  PubMed  Google Scholar 

  95. Dhalla NS, Temsah RM, Netticadan T. Role of oxidative stress in cardiovascular diseases. J Hypertens. 2000;18(6):655–73.

    CAS  PubMed  Google Scholar 

  96. Sjodin B, Hellsten Westing Y, Apple FS. Biochemical mechanisms for oxygen free radical formation during exercise. Sports Med. 1990;10(4):236–54.

    CAS  PubMed  Google Scholar 

  97. Miyazaki H, et al. Strenuous endurance training in humans reduces oxidative stress following exhausting exercise. Eur J Appl Physiol. 2001;84(1–2):1–6.

    CAS  PubMed  Google Scholar 

  98. North BJ, Sinclair DA. The intersection between aging and cardiovascular disease. Circ Res. 2012;110(8):1097–108.

    PubMed Central  CAS  PubMed  Google Scholar 

  99. Moslehi J, DePinho RA, Sahin E. Telomeres and mitochondria in the aging heart. Circ Res. 2012;110(9):1226–37.

    PubMed Central  CAS  PubMed  Google Scholar 

  100. Lanza IR, Nair KS. Mitochondrial function as a determinant of life span. Pflugers Arch. 2010;459(2):277–89.

    PubMed Central  CAS  PubMed  Google Scholar 

  101. Adhihetty PJ, et al. The effect of training on the expression of mitochondrial biogenesis- and apoptosis-related proteins in skeletal muscle of patients with mtDNA defects. Am J Physiol Endocrinol Metab. 2007;293(3):E672–80.

    CAS  PubMed  Google Scholar 

  102. Radak Z, et al. Telomerase activity is not altered by regular strenuous exercise in skeletal muscle or by sarcoma in liver of rats. Redox Rep. 2001;6(2):99–103.

    CAS  PubMed  Google Scholar 

  103. Sinclair DA. Toward a unified theory of caloric restriction and longevity regulation. Mech Ageing Dev. 2005;126(9):987–1002.

    CAS  PubMed  Google Scholar 

  104. Roberts CK, Vaziri ND, Barnard RJ. Effect of diet and exercise intervention on blood pressure, insulin, oxidative stress, and nitric oxide availability. Circulation. 2002;106(20):2530–2.

    CAS  PubMed  Google Scholar 

  105. Ji LL. Antioxidants and oxidative stress in exercise. Proc Soc Exp Biol Med. 1999;222(3):283–92.

    CAS  PubMed  Google Scholar 

  106. Reaven GM. Banting lecture 1988. Role of insulin resistance in human disease. Diabetes. 1988;37(12):1595–607.

    CAS  PubMed  Google Scholar 

  107. Ford ES, Giles WH, Mokdad AH. Increasing prevalence of the metabolic syndrome among u.s. Adults. Diabetes Care. 2004;27(10):2444–9.

    PubMed  Google Scholar 

  108. Sattar N, et al. Metabolic syndrome with and without C-reactive protein as a predictor of coronary heart disease and diabetes in the West of Scotland Coronary Prevention Study. Circulation. 2003;108(4):414–9.

    CAS  PubMed  Google Scholar 

  109. Lakka HM, et al. The metabolic syndrome and total and cardiovascular disease mortality in middle-aged men. JAMA. 2002;288(21):2709–16.

    PubMed  Google Scholar 

  110. Malik S, et al. Impact of the metabolic syndrome on mortality from coronary heart disease, cardiovascular disease, and all causes in United States adults. Circulation. 2004;110(10):1245–50.

    PubMed  Google Scholar 

  111. LaMonte MJ, et al. Cardiorespiratory fitness is inversely associated with the incidence of metabolic syndrome: a prospective study of men and women. Circulation. 2005;112(4):505–12.

    PubMed  Google Scholar 

  112. Katzmarzyk PT, Church TS, Blair SN. Cardiorespiratory fitness attenuates the effects of the metabolic syndrome on all-cause and cardiovascular disease mortality in men. Arch Intern Med. 2004;164(10):1092–7.

    PubMed  Google Scholar 

  113. Knowler WC, et al. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med. 2002;346(6):393–403.

    CAS  PubMed  Google Scholar 

  114. Cappuccio FP, et al. Sleep duration predicts cardiovascular outcomes: a systematic review and meta-analysis of prospective studies. Eur Heart J. 2011;32(12):1484–92.

    PubMed  Google Scholar 

  115. King CR, et al. Short sleep duration and incident coronary artery calcification. JAMA. 2008;300(24):2859–66.

    PubMed Central  CAS  PubMed  Google Scholar 

  116. Okun ML, Coussons-Read M, Hall M. Disturbed sleep is associated with increased C-reactive protein in young women. Brain Behav Immun. 2009;23(3):351–4.

    PubMed Central  CAS  PubMed  Google Scholar 

  117. King AC, et al. Moderate-intensity exercise and self-rated quality of sleep in older adults. A randomized controlled trial. JAMA. 1997;277(1):32–7.

    CAS  PubMed  Google Scholar 

  118. Loprinzi PD, Cardinal BJ. Association between objectively-measured physical activity and sleep, NHANES 2005–2006. Ment Health Phys Act. 2011;4(2):5.

    Google Scholar 

  119. Singh NA, Clements KM, Fiatarone MA. A randomized controlled trial of the effect of exercise on sleep. Sleep. 1997;20(2):95–101.

    CAS  PubMed  Google Scholar 

  120. Delp MD. Effects of exercise training on endothelium-dependent peripheral vascular responsiveness. Med Sci Sports Exerc. 1995;27(8):1152–7.

    CAS  PubMed  Google Scholar 

  121. Hambrecht R, et al. Effect of exercise on coronary endothelial function in patients with coronary artery disease. N Engl J Med. 2000;342(7):454–60.

    CAS  PubMed  Google Scholar 

  122. Hambrecht R, et al. Regular physical activity improves endothelial function in patients with coronary artery disease by increasing phosphorylation of endothelial nitric oxide synthase. Circulation. 2003;107(25):3152–8.

    CAS  PubMed  Google Scholar 

  123. Walther C, Gielen S, Hambrecht R. The effect of exercise training on endothelial function in cardiovascular disease in humans. Exerc Sport Sci Rev. 2004;32(4):129–34.

    PubMed  Google Scholar 

  124. Falk E. Why do plaques rupture? Circulation. 1992;86(6 Suppl):III30–42.

    CAS  PubMed  Google Scholar 

  125. Falk E, Shah PK, Fuster V. Coronary plaque disruption. Circulation. 1995;92(3):657–71.

    CAS  PubMed  Google Scholar 

  126. Pellegrin M, et al. Long-term exercise stabilizes atherosclerotic plaque in ApoE knockout mice. Med Sci Sports Exerc. 2009;41(12):2128–35.

    CAS  PubMed  Google Scholar 

  127. Lamonte MJ, et al. Coronary artery calcium, exercise tolerance, and CHD events in asymptomatic men. Atherosclerosis. 2006;189(1):157–62.

    CAS  PubMed  Google Scholar 

  128. Laughlin MH, McAllister RM. Exercise training-induced coronary vascular adaptation. J Appl Physiol. 1992;73(6):2209–25.

    CAS  PubMed  Google Scholar 

  129. Belardinelli R, et al. Effects of moderate exercise training on thallium uptake and contractile response to low-dose dobutamine of dysfunctional myocardium in patients with ischemic cardiomyopathy. Circulation. 1998;97(6):553–61.

    CAS  PubMed  Google Scholar 

  130. Schuler G, et al. Myocardial perfusion and regression of coronary artery disease in patients on a regimen of intensive physical exercise and low fat diet. J Am Coll Cardiol. 1992;19(1):34–42.

    CAS  PubMed  Google Scholar 

  131. Kennedy CC, et al. One-year graduated exercise program for men with angina pectoris. Evaluation by physiologic studies and coronary arteriography. Mayo Clin Proc. 1976;51(4):231–6.

    CAS  PubMed  Google Scholar 

  132. Nolewajka AJ, et al. Exercise and human collateralization: an angiographic and scintigraphic assessment. Circulation. 1979;60(1):114–21.

    CAS  PubMed  Google Scholar 

  133. Ferguson RJ, et al. Effect of physical training on treadmill exercise capacity, collateral circulation and progression of coronary disease. Am J Cardiol. 1974;34(7):764–9.

    CAS  PubMed  Google Scholar 

  134. Conner JF, et al. Effects of exercise on coronary collateralization – angiographic studies of six patients in a supervised exercise program. Med Sci Sports. 1976;8(3):145–51.

    CAS  PubMed  Google Scholar 

  135. Niebauer J, et al. Impact of intensive physical exercise and low-fat diet on collateral vessel formation in stable angina pectoris and angiographically confirmed coronary artery disease. Am J Cardiol. 1995;76(11):771–5.

    CAS  PubMed  Google Scholar 

  136. Eckstein RW. Effect of exercise and coronary artery narrowing on coronary collateral circulation. Circ Res. 1957;5(3):230–5.

    CAS  PubMed  Google Scholar 

  137. Tepperman J, Pearlman D. Effects of exercise and anemia on coronary arteries of small animals as revealed by the corrosion-cast technique. Circ Res. 1961;9:576–84.

    CAS  PubMed  Google Scholar 

  138. Wyatt HL, Mitchell J. Influences of physical conditioning and deconditioning on coronary vasculature of dogs. J Appl Physiol. 1978;45(4):619–25.

    CAS  PubMed  Google Scholar 

  139. Bove AA, Dewey JD. Proximal coronary vasomotor reactivity after exercise training in dogs. Circulation. 1985;71(3):620–5.

    CAS  PubMed  Google Scholar 

  140. Currens JH, White PD. Half a century of running. Clinical, physiologic and autopsy findings in the case of Clarence DeMar (“Mr. Marathon”). N Engl J Med. 1961;265:988–93.

    CAS  PubMed  Google Scholar 

  141. Mann GV, et al. Atherosclerosis in the Masai. Am J Epidemiol. 1972;95(1):26–37.

    CAS  PubMed  Google Scholar 

  142. Haskell WL, et al. Coronary artery size and dilating capacity in ultradistance runners. Circulation. 1993;87(4):1076–82.

    CAS  PubMed  Google Scholar 

  143. Levine BD, Mitchell JH. ‘Ultra’ coronary arteries: bigger and better? Circulation. 1993;87(4):1402–4.

    CAS  PubMed  Google Scholar 

  144. Hambrecht R, et al. Various intensities of leisure time physical activity in patients with coronary artery disease: effects on cardiorespiratory fitness and progression of coronary atherosclerotic lesions. J Am Coll Cardiol. 1993;22(2):468–77.

    CAS  PubMed  Google Scholar 

  145. Niebauer J, et al. Attenuated progression of coronary artery disease after 6 years of multifactorial risk intervention: role of physical exercise. Circulation. 1997;96(8):2534–41.

    CAS  PubMed  Google Scholar 

  146. Desai MY, et al. Relation of degree of physical activity to coronary artery calcium score in asymptomatic individuals with multiple metabolic risk factors. Am J Cardiol. 2004;94(6):729–32.

    CAS  PubMed  Google Scholar 

  147. Mitchell JH. Exercise training in the treatment of coronary heart disease. Adv Intern Med. 1975;20:249–72.

    CAS  PubMed  Google Scholar 

  148. Ades PA, et al. Skeletal muscle and cardiovascular adaptations to exercise conditioning in older coronary patients. Circulation. 1996;94(3):323–30.

    CAS  PubMed  Google Scholar 

  149. Detry JM, et al. Increased arteriovenous oxygen difference after physical training in coronary heart disease. Circulation. 1971;44(1):109–18.

    CAS  PubMed  Google Scholar 

  150. Dressendorfer RH, et al. Reduction of submaximal exercise myocardial oxygen demand post-walk training program in coronary patients due to improved physical work efficiency. Am Heart J. 1982;103(3):358–62.

    CAS  PubMed  Google Scholar 

  151. Ehsani AA, et al. Effects of 12 months of intense exercise training on ischemic ST-segment depression in patients with coronary artery disease. Circulation. 1981;64(6):1116–24.

    CAS  PubMed  Google Scholar 

  152. Kendziorra K, et al. Changes in myocardial perfusion due to physical exercise in patients with stable coronary artery disease. Eur J Nucl Med Mol Imaging. 2005;32(7):813–9.

    PubMed  Google Scholar 

  153. Golbidi S, Laher I. Molecular mechanisms in exercise-induced cardioprotection. Cardiol Res Pract. 2011;2011:972807.

    PubMed Central  PubMed  Google Scholar 

  154. Redwood DR, Rosing DR, Epstein SE. Circulatory and symptomatic effects of physical training in patients with coronary-artery disease and angina pectoris. N Engl J Med. 1972;286(18):959–65.

    CAS  PubMed  Google Scholar 

  155. Hambrecht R, et al. Percutaneous coronary angioplasty compared with exercise training in patients with stable coronary artery disease: a randomized trial. Circulation. 2004;109(11):1371–8.

    PubMed  Google Scholar 

  156. Ehsani AA, et al. Improvement of left ventricular contractile function by exercise training in patients with coronary artery disease. Circulation. 1986;74(2):350–8.

    CAS  PubMed  Google Scholar 

  157. Hartley LH, et al. Physical training in sedentary middle-aged and older men. 3. Cardiac output and gas exchange asubmaximal and maximal exercise. Scand J Clin Lab Invest. 1969;24(4):335–44.

    CAS  PubMed  Google Scholar 

  158. Hagberg JM, Ehsani AA, Holloszy JO. Effect of 12 months of intense exercise training on stroke volume in patients with coronary artery disease. Circulation. 1983;67(6):1194–9.

    CAS  PubMed  Google Scholar 

  159. Levy WC, et al. Endurance exercise training augments diastolic filling at rest and during exercise in healthy young and older men. Circulation. 1993;88(1):116–26.

    CAS  PubMed  Google Scholar 

  160. Prasad A, et al. The effects of aging and physical activity on Doppler measures of diastolic function. Am J Cardiol. 2007;99(12):1629–36.

    PubMed Central  PubMed  Google Scholar 

  161. Giannuzzi P, et al. Antiremodeling effect of long-term exercise training in patients with stable chronic heart failure: results of the Exercise in Left Ventricular Dysfunction and Chronic Heart Failure (ELVD-CHF) Trial. Circulation. 2003;108(5):554–9.

    PubMed  Google Scholar 

  162. Arbab-Zadeh A, et al. Effect of aging and physical activity on left ventricular compliance. Circulation. 2004;110(13):1799–805.

    PubMed  Google Scholar 

  163. Anker SD, Steinborn W, Strassburg S. Cardiac cachexia. Ann Med. 2004;36(7):518–29.

    PubMed  Google Scholar 

  164. Evans WJ. What is sarcopenia? J Gerontol A Biol Sci Med Sci. 1995;50 Spec No:5–8.

    Google Scholar 

  165. Wolfe RR. The underappreciated role of muscle in health and disease. Am J Clin Nutr. 2006;84(3):475–82.

    CAS  PubMed  Google Scholar 

  166. Vita JA, Keaney Jr JF. Endothelial function: a barometer for cardiovascular risk? Circulation. 2002;106(6):640–2.

    PubMed  Google Scholar 

  167. Yeboah J, et al. Predictive value of brachial flow-mediated dilation for incident cardiovascular events in a population-based study: the multi-ethnic study of atherosclerosis. Circulation. 2009;120(6):502–9.

    PubMed Central  PubMed  Google Scholar 

  168. Clarkson P, et al. Exercise training enhances endothelial function in young men. J Am Coll Cardiol. 1999;33(5):1379–85.

    CAS  PubMed  Google Scholar 

  169. Gokce N, et al. Effect of exercise on upper and lower extremity endothelial function in patients with coronary artery disease. Am J Cardiol. 2002;90(2):124–7.

    PubMed  Google Scholar 

  170. Shibata S, Levine BD. Biological aortic age derived from the arterial pressure waveform. J Appl Physiol. 2011;110(4):981–7.

    PubMed Central  PubMed  Google Scholar 

  171. Shibata S, Levine BD. Effect of exercise training on biologic vascular age in healthy seniors. Am J Physiol Heart Circ Physiol. 2012;302(6):H1340–6.

    PubMed Central  CAS  PubMed  Google Scholar 

  172. Fujimoto N, et al. Cardiovascular effects of 1 year of progressive and vigorous exercise training in previously sedentary individuals older than 65 years of age. Circulation. 2010;122(18):1797–805.

    PubMed Central  PubMed  Google Scholar 

  173. Shibata S, et al. ‘Dynamic’ Starling mechanism: effects of ageing and physical fitness on ventricular-arterial coupling. J Physiol. 2008;586(7):1951–62.

    PubMed Central  CAS  PubMed  Google Scholar 

  174. Podrid PJ, Fuchs T, Candinas R. Role of the sympathetic nervous system in the genesis of ventricular arrhythmia. Circulation. 1990;82(2 Suppl):I103–13.

    CAS  PubMed  Google Scholar 

  175. Schwartz PJ. The autonomic nervous system and sudden death. Eur Heart J. 1998;19 Suppl F:F72–80.

    Google Scholar 

  176. Billman GE, Schwartz PJ, Stone HL. Baroreceptor reflex control of heart rate: a predictor of sudden cardiac death. Circulation. 1982;66(4):874–80.

    CAS  PubMed  Google Scholar 

  177. Casolo GC, et al. Heart rate variability during the acute phase of myocardial infarction. Circulation. 1992;85(6):2073–9.

    CAS  PubMed  Google Scholar 

  178. Kleiger RE, et al. Decreased heart rate variability and its association with increased mortality after acute myocardial infarction. Am J Cardiol. 1987;59(4):256–62.

    CAS  PubMed  Google Scholar 

  179. Farrell TG, et al. Risk stratification for arrhythmic events in postinfarction patients based on heart rate variability, ambulatory electrocardiographic variables and the signal-averaged electrocardiogram. J Am Coll Cardiol. 1991;18(3):687–97.

    CAS  PubMed  Google Scholar 

  180. La Rovere MT, et al. Baroreflex sensitivity and heart-rate variability in prediction of total cardiac mortality after myocardial infarction. ATRAMI (Autonomic Tone and Reflexes After Myocardial Infarction) Investigators. Lancet. 1998;351(9101):478–84.

    PubMed  Google Scholar 

  181. Tsuji H, et al. Impact of reduced heart rate variability on risk for cardiac events. The Framingham Heart Study. Circulation. 1996;94(11):2850–5.

    CAS  PubMed  Google Scholar 

  182. Billman GE, Schwartz PJ, Stone HL. The effects of daily exercise on susceptibility to sudden cardiac death. Circulation. 1984;69(6):1182–9.

    CAS  PubMed  Google Scholar 

  183. Vanoli E, et al. Vagal stimulation and prevention of sudden death in conscious dogs with a healed myocardial infarction. Circ Res. 1991;68(5):1471–81.

    CAS  PubMed  Google Scholar 

  184. La Rovere MT, et al. Exercise-induced increase in baroreflex sensitivity predicts improved prognosis after myocardial infarction. Circulation. 2002;106(8):945–9.

    PubMed  Google Scholar 

  185. Goldsmith RL, et al. Comparison of 24-hour parasympathetic activity in endurance-trained and untrained young men. J Am Coll Cardiol. 1992;20(3):552–8.

    CAS  PubMed  Google Scholar 

  186. Shin K, et al. Autonomic differences between athletes and nonathletes: spectral analysis approach. Med Sci Sports Exerc. 1997;29(11):1482–90.

    CAS  PubMed  Google Scholar 

  187. Seals DR, Chase PB. Influence of physical training on heart rate variability and baroreflex circulatory control. J Appl Physiol. 1989;66(4):1886–95.

    CAS  PubMed  Google Scholar 

  188. Pagani M, et al. Changes in autonomic regulation induced by physical training in mild hypertension. Hypertension. 1988;12(6):600–10.

    CAS  PubMed  Google Scholar 

  189. Coats AJ, et al. Controlled trial of physical training in chronic heart failure. Exercise performance, hemodynamics, ventilation, and autonomic function. Circulation. 1992;85(6):2119–31.

    CAS  PubMed  Google Scholar 

  190. Iwasaki K, et al. Dose–response relationship of the cardiovascular adaptation to endurance training in healthy adults: how much training for what benefit? J Appl Physiol. 2003;95(4):1575–83.

    PubMed  Google Scholar 

  191. Okazaki K, et al. Dose–response relationship of endurance training for autonomic circulatory control in healthy seniors. J Appl Physiol. 2005;99(3):1041–9.

    PubMed  Google Scholar 

  192. Iwasaki KI, et al. Effect of head-down-tilt bed rest and hypovolemia on dynamic regulation of heart rate and blood pressure. Am J Physiol Regul Integr Comp Physiol. 2000;279(6):R2189–99.

    CAS  PubMed  Google Scholar 

  193. Bowman AJ, et al. Baroreflex function in sedentary and endurance-trained elderly people. Age Ageing. 1997;26(4):289–94.

    CAS  PubMed  Google Scholar 

  194. Levy WC, et al. Effect of endurance exercise training on heart rate variability at rest in healthy young and older men. Am J Cardiol. 1998;82(10):1236–41.

    CAS  PubMed  Google Scholar 

  195. Schuit AJ, et al. Exercise training and heart rate variability in older people. Med Sci Sports Exerc. 1999;31(6):816–21.

    CAS  PubMed  Google Scholar 

  196. Kallio V, et al. Reduction in sudden deaths by a multifactorial intervention programme after acute myocardial infarction. Lancet. 1979;2(8152):1091–4.

    CAS  PubMed  Google Scholar 

  197. Davies MJ, Thomas AC. Plaque fissuring – the cause of acute myocardial infarction, sudden ischaemic death, and crescendo angina. Br Heart J. 1985;53(4):363–73.

    PubMed Central  CAS  PubMed  Google Scholar 

  198. Hunter J. A treatise on blood, inflammation, and gunshot wounds. London: printed for G Nicol; 1794. p. 88.

    Google Scholar 

  199. Bartsch P, Haeberli A, Straub PW. Blood coagulation after long distance running: antithrombin III prevents fibrin formation. Thromb Haemost. 1990;63(3):430–4.

    CAS  PubMed  Google Scholar 

  200. Dufaux B, Order U, Liesen H. Effect of a short maximal physical exercise on coagulation, fibrinolysis, and complement system. Int J Sports Med. 1991;12 Suppl 1:S38–42.

    PubMed  Google Scholar 

  201. El-Sayed MS, El-Sayed Ali Z, Ahmadizad S. Exercise and training effects on blood haemostasis in health and disease: an update. Sports Med. 2004;34(3):181–200.

    PubMed  Google Scholar 

  202. Lee KW, Lip GY. Effects of lifestyle on hemostasis, fibrinolysis, and platelet reactivity: a systematic review. Arch Intern Med. 2003;163(19):2368–92.

    PubMed  Google Scholar 

  203. Weiss C, Seitel G, Bartsch P. Coagulation and fibrinolysis after moderate and very heavy exercise in healthy male subjects. Med Sci Sports Exerc. 1998;30(2):246–51.

    CAS  PubMed  Google Scholar 

  204. Andrew M, et al. Increases in factor VIII complex and fibrinolytic activity are dependent on exercise intensity. J Appl Physiol. 1986;60(6):1917–22.

    CAS  PubMed  Google Scholar 

  205. Kopitsky RG, et al. The basis for the increase in factor VIII procoagulant activity during exercise. Thromb Haemost. 1983;49(1):53–7.

    CAS  PubMed  Google Scholar 

  206. Davis GL, et al. Fibrinolytic and hemostatic changes during and after maximal exercise in males. J Appl Physiol. 1976;40(3):287–92.

    CAS  PubMed  Google Scholar 

  207. Weiss C, et al. Coagulation and thrombomodulin in response to exercise of different type and duration. Med Sci Sports Exerc. 1998;30(8):1205–10.

    CAS  PubMed  Google Scholar 

  208. Ferguson EW, Barr CF, Bernier LL. Fibrinogenolysis and fibrinolysis with strenuous exercise. J Appl Physiol. 1979;47(6):1157–61.

    CAS  PubMed  Google Scholar 

  209. Szymanski LM, Pate RR, Durstine JL. Effects of maximal exercise and venous occlusion on fibrinolytic activity in physically active and inactive men. J Appl Physiol. 1994;77(5):2305–10.

    CAS  PubMed  Google Scholar 

  210. Chandler WL, et al. Effects of endurance training on the circadian rhythm of fibrinolysis in men and women. Med Sci Sports Exerc. 1996;28(6):647–55.

    CAS  PubMed  Google Scholar 

  211. Stratton JR, et al. Effects of physical conditioning on fibrinolytic variables and fibrinogen in young and old healthy adults. Circulation. 1991;83(5):1692–7.

    CAS  PubMed  Google Scholar 

  212. Chandler WL, et al. Fibrinolytic response during exercise and epinephrine infusion in the same subjects. J Am Coll Cardiol. 1992;19(7):1412–20.

    CAS  PubMed  Google Scholar 

  213. Wang JS, Jen CJ, Chen HI. Effects of exercise training and deconditioning on platelet function in men. Arterioscler Thromb Vasc Biol. 1995;15(10):1668–74.

    CAS  PubMed  Google Scholar 

  214. Kestin AS, et al. Effect of strenuous exercise on platelet activation state and reactivity. Circulation. 1993;88(4 Pt 1):1502–11.

    CAS  PubMed  Google Scholar 

  215. Wang JS, Jen CJ, Chen HI. Effects of chronic exercise and deconditioning on platelet function in women. J Appl Physiol. 1997;83(6):2080–5.

    CAS  PubMed  Google Scholar 

  216. Rauramaa R, et al. Inhibition of platelet aggregability by moderate-intensity physical exercise: a randomized clinical trial in overweight men. Circulation. 1986;74(5):939–44.

    CAS  PubMed  Google Scholar 

  217. Mittleman MA, et al. Triggering of acute myocardial infarction by heavy physical exertion. Protection against triggering by regular exertion Determinants of Myocardial Infarction Onset Study Investigators. N Engl J Med. 1993;329(23):1677–83.

    CAS  PubMed  Google Scholar 

  218. Morris JN, Crawford MD. Coronary heart disease and physical activity of work; evidence of a national necropsy survey. Br Med J. 1958;30(5111):1485–96.

    Google Scholar 

  219. Morris JN, et al. Coronary heart-disease and physical activity of work. Lancet. 1953;265(6796):1111–20; concl.

    CAS  PubMed  Google Scholar 

  220. Paffenbarger RS, Hale WE. Work activity and coronary heart mortality. N Engl J Med. 1975;292(11):545–50.

    CAS  PubMed  Google Scholar 

  221. Paffenbarger Jr RS, et al. Work activity of longshoremen as related to death from coronary heart disease and stroke. N Engl J Med. 1970;282(20):1109–14.

    PubMed  Google Scholar 

  222. Berlin JA, Colditz GA. A meta-analysis of physical activity in the prevention of coronary heart disease. Am J Epidemiol. 1990;132(4):612–28.

    CAS  PubMed  Google Scholar 

  223. Zukel WJ, et al. A short-term community study of the epidemiology of coronary heart disease. A preliminary report on the North Dakota study. Am J Public Health. 1959;49:1630–9.

    CAS  Google Scholar 

  224. Kahn HA. The relationship of reported coronary heart disease mortality to physical activity of work. Am J Public Health. 1963;53:1058–67.

    CAS  Google Scholar 

  225. Taylor HL, et al. Death rates among physically active and sedentary employees of the railroad industry. Am J Public Health. 1962;52:1697–707.

    CAS  Google Scholar 

  226. Shapiro S, et al. Incidence of coronary heart disease in a population insured for medical care (HIP): myocardial infarction, angina pectoris, and possible myocardial infarction. Am J Public Health Nations Health. 1969;59 (Suppl 6):1–101.

    PubMed Central  PubMed  Google Scholar 

  227. Durand G, et al. Firefighters’ physical activity: relation to fitness and cardiovascular disease risk. Med Sci Sports Exerc. 2011;43(9):1752–9.

    PubMed  Google Scholar 

  228. Kannel WB, Sorlie P. Some health benefits of physical activity. The Framingham Study. Arch Intern Med. 1979;139(8):857–61.

    CAS  PubMed  Google Scholar 

  229. Leitzmann MF, et al. Physical activity recommendations and decreased risk of mortality. Arch Intern Med. 2007;167(22):2453–60.

    PubMed  Google Scholar 

  230. Garcia-Palmieri MR, et al. Increased physical activity: a protective factor against heart attacks in Puerto Rico. Am J Cardiol. 1982;50(4):749–55.

    CAS  PubMed  Google Scholar 

  231. Paffenbarger Jr RS, et al. The association of changes in physical-activity level and other lifestyle characteristics with mortality among men. N Engl J Med. 1993;328(8):538–45.

    PubMed  Google Scholar 

  232. Cassel J, et al. Occupation and physical activity and coronary heart disease. Arch Intern Med. 1971;128(6):920–8.

    CAS  PubMed  Google Scholar 

  233. Brunner D, et al. Physical activity at work and the incidence of myocardial infarction, angina pectoris and death due to ischemic heart disease. An epidemiological study in Israeli collective settlements (Kibbutzim). J Chronic Dis. 1974;27(4):217–33.

    CAS  PubMed  Google Scholar 

  234. Patel AV, et al. Leisure time spent sitting in relation to total mortality in a prospective cohort of US adults. Am J Epidemiol. 2010;172(4):419–29.

    PubMed Central  PubMed  Google Scholar 

  235. Blair SN, Cheng Y, Holder JS. Is physical activity or physical fitness more important in defining health benefits? Med Sci Sports Exerc. 2001;33(6 Suppl):S379–99; discussion S419–20.

    CAS  PubMed  Google Scholar 

  236. President’s Council on Physical Fitness and Sports, Exercise programs for adults. 1965; US Government Printing Office: Washington, DC.

    Google Scholar 

  237. Astrand PO. Physiological bases of exercise. In: Text book of work physiology. New York: McGraw-Hill; 1986.

    Google Scholar 

  238. Sandvik L, et al. Physical fitness as a predictor of mortality among healthy, middle-aged Norwegian men. N Engl J Med. 1993;328(8):533–7.

    CAS  PubMed  Google Scholar 

  239. Bouchard C, et al. Aerobic performance in brothers, dizygotic and monozygotic twins. Med Sci Sports Exerc. 1986;18(6):639–46.

    CAS  PubMed  Google Scholar 

  240. Hein HO, Suadicani P, Gyntelberg F. Physical fitness or physical activity as a predictor of ischaemic heart disease? A 17-year follow-up in the Copenhagen Male Study. J Intern Med. 1992;232(6):471–9.

    CAS  PubMed  Google Scholar 

  241. Blair SN, et al. Changes in physical fitness and all-cause mortality. A prospective study of healthy and unhealthy men. JAMA. 1995;273(14):1093–8.

    CAS  PubMed  Google Scholar 

  242. Wilhelmsen L, et al. Nine years’ follow-up of a maximal exercise test in a random population sample of middle-aged men. Cardiology. 1981;68 Suppl 2:1–8.

    PubMed  Google Scholar 

  243. Laukkanen JA, et al. Cardiovascular fitness as a predictor of mortality in men. Arch Intern Med. 2001;161(6):825–31.

    CAS  PubMed  Google Scholar 

  244. Ekelund LG, et al. Physical fitness as a predictor of cardiovascular mortality in asymptomatic North American men. The Lipid Research Clinics Mortality Follow-up Study. N Engl J Med. 1988;319(21):1379–84.

    CAS  PubMed  Google Scholar 

  245. Blair SN, et al. Physical fitness and all-cause mortality. A prospective study of healthy men and women. JAMA. 1989;262(17):2395–401.

    CAS  PubMed  Google Scholar 

  246. Gulati M, et al. The prognostic value of a nomogram for exercise capacity in women. N Engl J Med. 2005;353(5):468–75.

    CAS  PubMed  Google Scholar 

  247. Myers J, et al. Exercise capacity and mortality among men referred for exercise testing. N Engl J Med. 2002;346(11):793–801.

    PubMed  Google Scholar 

  248. Kujala UM, et al. Relationship of leisure-time physical activity and mortality: the Finnish twin cohort. JAMA. 1998;279(6):440–4.

    CAS  PubMed  Google Scholar 

  249. La Gerche A, Prior DL. Exercise – is it possible to have too much of a good thing? Heart Lung Circ. 2007;16 Suppl 3:S102–4.

    PubMed  Google Scholar 

  250. Mohlenkamp S, et al. Running: the risk of coronary events: prevalence and prognostic relevance of coronary atherosclerosis in marathon runners. Eur Heart J. 2008;29(15):1903–10.

    PubMed  Google Scholar 

  251. Scherr J, et al. Repolarization perturbation and hypomagnesemia after extreme exercise. Med Sci Sports Exerc. 2012;44(9):1637–43.

    CAS  PubMed  Google Scholar 

  252. La Gerche A, et al. Exercise-induced right ventricular dysfunction and structural remodelling in endurance athletes. Eur Heart J. 2012;33(8):998–1006.

    PubMed  Google Scholar 

  253. Albert CM, et al. Triggering of sudden death from cardiac causes by vigorous exertion. N Engl J Med. 2000;343(19):1355–61.

    CAS  PubMed  Google Scholar 

  254. Kohl 3rd HW, et al. Physical activity, physical fitness, and sudden cardiac death. Epidemiol Rev. 1992;14:37–58.

    PubMed  Google Scholar 

  255. Myerburg RJ, et al. A biological approach to sudden cardiac death: structure, function and cause. Am J Cardiol. 1989;63(20):1512–6.

    CAS  PubMed  Google Scholar 

  256. Siscovick DS, et al. The incidence of primary cardiac arrest during vigorous exercise. N Engl J Med. 1984;311(14):874–7.

    CAS  PubMed  Google Scholar 

  257. Whang W, et al. Physical exertion, exercise, and sudden cardiac death in women. JAMA. 2006;295(12):1399–403.

    CAS  PubMed  Google Scholar 

  258. Willich SN, et al. Physical exertion as a trigger of acute myocardial infarction. Triggers and Mechanisms of Myocardial Infarction Study Group. N Engl J Med. 1993;329(23):1684–90.

    CAS  PubMed  Google Scholar 

  259. Levine B, Zuckerman J, Cole C. Medical complications of exercise. In: Roitman J, Roitman J, editors. American College of Sports Medicine’s Resource manual: guidelines for exercise testing and prescription. Baltimore: Williams and Wilkins; 1998.

    Google Scholar 

  260. Gibbons L, et al. The safety of maximal exercise testing. Circulation. 1989;80(4):846–52.

    CAS  PubMed  Google Scholar 

  261. Thompson PD, et al. Incidence of death during jogging in Rhode Island from 1975 through 1980. JAMA. 1982;247(18):2535–8.

    CAS  PubMed  Google Scholar 

  262. Maron BJ, Poliac LC, Roberts WO. Risk for sudden cardiac death associated with marathon running. J Am Coll Cardiol. 1996;28(2):428–31.

    CAS  PubMed  Google Scholar 

  263. Kim JH, et al. Cardiac arrest during long-distance running races. N Engl J Med. 2012;366(2):130–40.

    CAS  PubMed  Google Scholar 

  264. O’Keefe JH, et al. Potential adverse cardiovascular effects from excessive endurance exercise. Mayo Clin Proc. 2012;87(6):587–95.

    PubMed Central  PubMed  Google Scholar 

  265. Gibbons RJ, et al. ACC/AHA 2002 guideline update for exercise testing: summary article: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee to Update the 1997 Exercise Testing Guidelines). Circulation. 2002;106(14):1883–92.

    PubMed  Google Scholar 

  266. Screening for coronary heart disease: recommendation statement. Ann Intern Med. 2004;140(7):569–72.

    Google Scholar 

  267. Haskell WL, et al. Physical activity and public health: updated recommendation for adults from the American College of Sports Medicine and the American Heart Association. Circulation. 2007;116(9):1081–93.

    PubMed  Google Scholar 

  268. Thomas RJ, et al. AACVPR/ACC/AHA 2007 performance measures on cardiac rehabilitation for referral to and delivery of cardiac rehabilitation/secondary prevention services. Circulation. 2007;116(14):1611–42.

    PubMed  Google Scholar 

  269. Squires RW, et al. Cardiovascular rehabilitation: status, 1990. Mayo Clin Proc. 1990;65(5):731–55.

    CAS  PubMed  Google Scholar 

  270. Cardiac rehabilitation programs. A statement for healthcare professionals from the American Heart Association. Circulation. 1994;90(3):1602–10.

    Google Scholar 

  271. Balady GJ, et al. Core components of cardiac rehabilitation/secondary prevention programs: a statement for healthcare professionals from the American Heart Association and the American Association of Cardiovascular and Pulmonary Rehabilitation Writing Group. Circulation. 2000;102(9):1069–73.

    CAS  PubMed  Google Scholar 

  272. Balady GJ, et al. Core components of cardiac rehabilitation/secondary prevention programs: 2007 update: a scientific statement from the American Heart Association Exercise, Cardiac Rehabilitation, and Prevention Committee, the Council on Clinical Cardiology; the Councils on Cardiovascular Nursing, Epidemiology and Prevention, and Nutrition, Physical Activity, and Metabolism; and the American Association of Cardiovascular and Pulmonary Rehabilitation. Circulation. 2007;115(20):2675–82.

    PubMed  Google Scholar 

  273. Leon AS, et al. Cardiac rehabilitation and secondary prevention of coronary heart disease: an American Heart Association scientific statement from the Council on Clinical Cardiology (Subcommittee on Exercise, Cardiac Rehabilitation, and Prevention) and the Council on Nutrition, Physical Activity, and Metabolism (Subcommittee on Physical Activity), in collaboration with the American association of Cardiovascular and Pulmonary Rehabilitation. Circulation. 2005;111(3):369–76.

    PubMed  Google Scholar 

  274. O’Connor GT, et al. An overview of randomized trials of rehabilitation with exercise after myocardial infarction. Circulation. 1989;80(2):234–44.

    PubMed  Google Scholar 

  275. Oldridge NB, et al. Cardiac rehabilitation after myocardial infarction. Combined experience of randomized clinical trials. JAMA. 1988;260(7):945–50.

    CAS  PubMed  Google Scholar 

  276. Taylor RS, et al. Exercise-based rehabilitation for patients with coronary heart disease: systematic review and meta-analysis of randomized controlled trials. Am J Med. 2004;116(10):682–92.

    PubMed  Google Scholar 

  277. Suaya JA, et al. Cardiac rehabilitation and survival in older coronary patients. J Am Coll Cardiol. 2009;54(1):25–33.

    PubMed  Google Scholar 

  278. Goel K, et al. Impact of cardiac rehabilitation on mortality and cardiovascular events after percutaneous coronary intervention in the community. Circulation. 2011;123(21):2344–52.

    PubMed  Google Scholar 

  279. Martin BJ, et al. Cardiac rehabilitation attendance and outcomes in coronary artery disease patients. Circulation. 2012;126(6):677–87.

    PubMed  Google Scholar 

  280. Hammill BG, et al. Relationship between cardiac rehabilitation and long-term risks of death and myocardial infarction among elderly Medicare beneficiaries. Circulation. 2010;121(1):63–70.

    PubMed Central  PubMed  Google Scholar 

  281. Herridge ML, et al. Depression screening in cardiac rehabilitation: AACVPR Task Force Report. J Cardiopulm Rehabil. 2005;25(1):11–3.

    PubMed  Google Scholar 

  282. Rozanski A, et al. The epidemiology, pathophysiology, and management of psychosocial risk factors in cardiac practice: the emerging field of behavioral cardiology. J Am Coll Cardiol. 2005;45(5):637–51.

    PubMed  Google Scholar 

  283. Milani RV, Lavie CJ. Impact of cardiac rehabilitation on depression and its associated mortality. Am J Med. 2007;120(9):799–806.

    PubMed  Google Scholar 

  284. McGrady A, et al. Effects of depression and anxiety on adherence to cardiac rehabilitation. J Cardiopulm Rehabil Prev. 2009;29(6):358–64.

    PubMed  Google Scholar 

  285. American Association of Cardiovascular and Pulmonary Rehabilitation. The cardiac rehabilitation continuum of care. In: American Association of Cardiovascular and Pulmonary Rehabilitation, Williams MA, editors. Guidelines for cardiac rehabilitation and secondary prevention programs. Inc.: Human Kinetics Publishers; 2004. p. 5–20.

    Google Scholar 

  286. Saltin B, et al. Response to exercise after bed rest and after training. Circulation. 1968;38(5 Suppl):VII1–78.

    CAS  PubMed  Google Scholar 

  287. Arena R, et al. Increasing referral and participation rates to outpatient cardiac rehabilitation: the valuable role of healthcare professionals in the inpatient and home health settings: a science advisory from the American Heart Association. Circulation. 2012;125(10):1321–9.

    PubMed  Google Scholar 

  288. Gravely-Witte S, et al. Effects of cardiac rehabilitation referral strategies on referral and enrollment rates. Nat Rev Cardiol. 2009;7(2):87–96.

    PubMed  Google Scholar 

  289. Mueller E, et al. Effect of a computerized referral at hospital discharge on cardiac rehabilitation participation rates. J Cardiopulm Rehabil Prev. 2009;29(6):365–9.

    PubMed  Google Scholar 

  290. Graham LE. Patients’ perceptions in the CCU. Am J Nurs. 1969;69(9):1921–2.

    CAS  PubMed  Google Scholar 

  291. Myerburg RJ, Kessler KM, Castellanos A. Sudden cardiac death. Structure, function, and time-dependence of risk. Circulation. 1992;85(1 Suppl):I2–10.

    CAS  PubMed  Google Scholar 

  292. Friedman DB, Williams AN, Levine BD. Compliance and efficacy of cardiac rehabilitation and risk factor modification in the medically indigent. Am J Cardiol. 1997;79(3):281–5.

    CAS  PubMed  Google Scholar 

  293. Borg G. Perceived exertion as an indicator of somatic stress. Scand J Rehabil Med. 1970;2(2):92–8.

    CAS  PubMed  Google Scholar 

  294. Chow RJ, Wilmore JH. The regulation of exercise intensity by ratings of perceived exertion. J Card Rehabil. 1984;4:382–7.

    Google Scholar 

  295. Balady GJ, et al. Clinician’s Guide to cardiopulmonary exercise testing in adults: a scientific statement from the American Heart Association. Circulation. 2010;122(2):191–225.

    PubMed  Google Scholar 

  296. Miller NH, et al. Home versus group exercise training for increasing functional capacity after myocardial infarction. Circulation. 1984;70(4):645–9.

    CAS  PubMed  Google Scholar 

  297. Onishi T, et al. Effects of phase III cardiac rehabilitation on mortality and cardiovascular events in elderly patients with stable coronary artery disease. Circ J. 2010;74(4):709–14.

    PubMed  Google Scholar 

  298. Balady GJ, et al. Referral, enrollment, and delivery of cardiac rehabilitation/secondary prevention programs at clinical centers and beyond: a presidential advisory from the American Heart Association. Circulation. 2011;124(25):2951–60.

    PubMed  Google Scholar 

  299. Suaya JA, et al. Use of cardiac rehabilitation by Medicare beneficiaries after myocardial infarction or coronary bypass surgery. Circulation. 2007;116(15):1653–62.

    PubMed  Google Scholar 

  300. Daly J, et al. Barriers to participation in and adherence to cardiac rehabilitation programs: a critical literature review. Prog Cardiovasc Nurs. 2002;17(1):8–17.

    PubMed  Google Scholar 

  301. Grace SL, et al. Contribution of patient and physician factors to cardiac rehabilitation enrollment: a prospective multilevel study. Eur J Cardiovasc Prev Rehabil. 2008;15(5):548–56.

    PubMed Central  PubMed  Google Scholar 

  302. Jackson L, et al. Getting the most out of cardiac rehabilitation: a review of referral and adherence predictors. Heart. 2005;91(1):10–4.

    PubMed Central  CAS  PubMed  Google Scholar 

  303. Gossard D, et al. Effects of low- and high-intensity home-based exercise training on functional capacity in healthy middle-aged men. Am J Cardiol. 1986;57(6):446–9.

    CAS  PubMed  Google Scholar 

  304. Homans DC, et al. Cumulative deterioration of myocardial function after repeated episodes of exercise-induced ischemia. Am J Physiol. 1989;256(5 Pt 2):H1462–71.

    CAS  PubMed  Google Scholar 

  305. Lambiase PD, et al. Exercise-induced ischemia initiates the second window of protection in humans independent of collateral recruitment. J Am Coll Cardiol. 2003;41(7):1174–82.

    PubMed  Google Scholar 

  306. Cobb LA, Weaver WD. Exercise: a risk for sudden death in patients with coronary heart disease. J Am Coll Cardiol. 1986;7(1):215–9.

    CAS  PubMed  Google Scholar 

  307. Hossack KF, Hartwig R. Cardiac arrest associated with supervised cardiac rehabilitation. J Card Rehabil. 1982;2:402–8.

    Google Scholar 

  308. Maraj R, et al. Coronary dissection and thrombosis associated with exercise testing three months after successful coronary stenting. Clin Cardiol. 1999;22(6):426–8.

    CAS  PubMed  Google Scholar 

  309. Samuels B, et al. Acute stent thrombosis associated with exercise testing after successful percutaneous transluminal coronary angioplasty. Am Heart J. 1995;130(5):1120–2.

    CAS  PubMed  Google Scholar 

  310. Sionis D, et al. Early exercise testing after successful percutaneous transluminal coronary angioplasty: a word of caution. Am Heart J. 1992;123(2):530–2.

    CAS  PubMed  Google Scholar 

  311. Pierce GL, et al. Lack of association of exercise testing with coronary stent closure. Am J Cardiol. 2000;86(11):1259–61, A6.

    CAS  PubMed  Google Scholar 

  312. Roffi M, et al. Early exercise after coronary stenting is safe. J Am Coll Cardiol. 2003;42(9):1569–73.

    PubMed  Google Scholar 

  313. Haskell WL. Cardiovascular complications during exercise training of cardiac patients. Circulation. 1978;57(5):920–4.

    CAS  PubMed  Google Scholar 

  314. Van Camp SP, Peterson RA. Cardiovascular complications of outpatient cardiac rehabilitation programs. JAMA. 1986;|256(9):1160–3.

    PubMed  Google Scholar 

  315. Franklin BA, et al. Safety of medically supervised outpatient cardiac rehabilitation exercise therapy: a 16-year follow-up. Chest. 1998;114(3):902–6.

    CAS  PubMed  Google Scholar 

  316. Juneau M, et al. Effectiveness of self-monitored, home-based, moderate-intensity exercise training in middle-aged men and women. Am J Cardiol. 1987;60(1):66–70.

    CAS  PubMed  Google Scholar 

  317. Wisloff U, et al. Superior cardiovascular effect of aerobic interval training versus moderate continuous training in heart failure patients: a randomized study. Circulation. 2007;115(24):3086–94.

    PubMed  Google Scholar 

  318. DeBusk RF, et al. Identification and treatment of low-risk patients after acute myocardial infarction and coronary-artery bypass graft surgery. N Engl J Med. 1986;314(3):161–6.

    CAS  PubMed  Google Scholar 

  319. Jolly K, et al. Home-based cardiac rehabilitation compared with centre-based rehabilitation and usual care: a systematic review and meta-analysis. Int J Cardiol. 2006;111(3):343–51.

    PubMed  Google Scholar 

  320. Dalal HM, et al. Home based versus centre based cardiac rehabilitation: Cochrane systematic review and meta-analysis. BMJ. 2010;340:b5631.

    PubMed Central  PubMed  Google Scholar 

  321. McKelvie RS, et al. Effects of exercise training in patients with heart failure: the Exercise Rehabilitation Trial (EXERT). Am Heart J. 2002;144(1):23–30.

    PubMed  Google Scholar 

  322. Belardinelli R, et al. Low intensity exercise training in patients with chronic heart failure. J Am Coll Cardiol. 1995;26(4):975–82.

    CAS  PubMed  Google Scholar 

  323. Belardinelli R, et al. Randomized, controlled trial of long-term moderate exercise training in chronic heart failure: effects on functional capacity, quality of life, and clinical outcome. Circulation. 1999;99(9):1173–82.

    CAS  PubMed  Google Scholar 

  324. Coats AJ, et al. Effects of physical training in chronic heart failure. Lancet. 1990;335(8681):63–6.

    CAS  PubMed  Google Scholar 

  325. Hambrecht R, et al. Effects of exercise training on left ventricular function and peripheral resistance in patients with chronic heart failure: a randomized trial. JAMA. 2000;283(23):3095–101.

    CAS  PubMed  Google Scholar 

  326. Hambrecht R, et al. Physical training in patients with stable chronic heart failure: effects on cardiorespiratory fitness and ultrastructural abnormalities of leg muscles. J Am Coll Cardiol. 1995;25(6):1239–49.

    CAS  PubMed  Google Scholar 

  327. Keteyian SJ, et al. Effects of exercise training on chronotropic incompetence in patients with heart failure. Am Heart J. 1999;138(2 Pt 1):233–40.

    CAS  PubMed  Google Scholar 

  328. Keteyian SJ, et al. Exercise training in patients with heart failure. A randomized, controlled trial. Ann Intern Med. 1996;124(12):1051–7.

    CAS  PubMed  Google Scholar 

  329. Kiilavuori K, et al. Effect of physical training on exercise capacity and gas exchange in patients with chronic heart failure. Chest. 1996;110(4):985–91.

    CAS  PubMed  Google Scholar 

  330. Kiilavuori K, et al. Reversal of autonomic derangements by physical training in chronic heart failure assessed by heart rate variability. Eur Heart J. 1995;16(4):490–5.

    CAS  PubMed  Google Scholar 

  331. Koch M, Douard H, Broustet JP. The benefit of graded physical exercise in chronic heart failure. Chest. 1992;101(5 Suppl):231S–5.

    CAS  PubMed  Google Scholar 

  332. Wielenga RP, et al. Exercise training in elderly patients with chronic heart failure. Coron Artery Dis. 1998;9(11):765–70.

    CAS  PubMed  Google Scholar 

  333. Willenheimer R, et al. Exercise training in heart failure improves quality of life and exercise capacity. Eur Heart J. 1998;19(5):774–81.

    CAS  PubMed  Google Scholar 

  334. Magnusson G, et al. Exercise capacity in heart failure patients: relative importance of heart and skeletal muscle. Clin Physiol. 1996;16(2):183–95.

    CAS  PubMed  Google Scholar 

  335. Mancini DM, et al. Value of peak exercise oxygen consumption for optimal timing of cardiac transplantation in ambulatory patients with heart failure. Circulation. 1991;83(3):778–86.

    CAS  PubMed  Google Scholar 

  336. Francis DP, et al. Cardiopulmonary exercise testing for prognosis in chronic heart failure: continuous and independent prognostic value from VE/VCO(2)slope and peak VO(2). Eur Heart J. 2000;21(2):154–61.

    CAS  PubMed  Google Scholar 

  337. Flynn KE, et al. Effects of exercise training on health status in patients with chronic heart failure: HF-ACTION randomized controlled trial. JAMA. 2009;301(14):1451–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  338. Nolan J, et al. Prospective study of heart rate variability and mortality in chronic heart failure: results of the United Kingdom heart failure evaluation and assessment of risk trial (UK-heart). Circulation. 1998;98(15):1510–6.

    CAS  PubMed  Google Scholar 

  339. Anderson TJ, et al. Close relation of endothelial function in the human coronary and peripheral circulations. J Am Coll Cardiol. 1995;26(5):1235–41.

    CAS  PubMed  Google Scholar 

  340. Mancini DM, et al. Benefit of selective respiratory muscle training on exercise capacity in patients with chronic congestive heart failure. Circulation. 1995;91(2):320–9.

    CAS  PubMed  Google Scholar 

  341. Hornig B, Maier V, Drexler H. Physical training improves endothelial function in patients with chronic heart failure. Circulation. 1996;93(2):210–4.

    CAS  PubMed  Google Scholar 

  342. Hambrecht R, et al. Regular physical exercise corrects endothelial dysfunction and improves exercise capacity in patients with chronic heart failure. Circulation. 1998;98(24):2709–15.

    CAS  PubMed  Google Scholar 

  343. Sullivan MJ, Higginbotham MB, Cobb FR. Exercise training in patients with severe left ventricular dysfunction. Hemodynamic and metabolic effects. Circulation. 1988;78(3):506–15.

    CAS  PubMed  Google Scholar 

  344. Belardinelli R, et al. Exercise training improves left ventricular diastolic filling in patients with dilated cardiomyopathy. Clinical and prognostic implications. Circulation. 1995;91(11):2775–84.

    CAS  PubMed  Google Scholar 

  345. Edelmann F, et al. Exercise training improves exercise capacity and diastolic function in patients with heart failure with preserved ejection fraction: results of the Ex-DHF (Exercise training in Diastolic Heart Failure) pilot study. J Am Coll Cardiol. 2011;58(17):1780–91.

    PubMed  Google Scholar 

  346. Duscha BD, et al. Implications of chronic heart failure on peripheral vasculature and skeletal muscle before and after exercise training. Heart Fail Rev. 2008;13(1):21–37.

    PubMed  Google Scholar 

  347. Duscha BD, et al. Deconditioning fails to explain peripheral skeletal muscle alterations in men with chronic heart failure. J Am Coll Cardiol. 2002;39(7):1170–4.

    PubMed  Google Scholar 

  348. Hambrecht R, et al. Effects of endurance training on mitochondrial ultrastructure and fiber type distribution in skeletal muscle of patients with stable chronic heart failure. J Am Coll Cardiol. 1997;29(5):1067–73.

    CAS  PubMed  Google Scholar 

  349. Erbs S, et al. Exercise training in patients with advanced chronic heart failure (NYHA IIIb) promotes restoration of peripheral vasomotor function, induction of endogenous regeneration, and improvement of left ventricular function. Circ Heart Fail. 2010;3(4):486–94.

    PubMed  Google Scholar 

  350. O’Connor CM, et al. Efficacy and safety of exercise training in patients with chronic heart failure: HF-ACTION randomized controlled trial. JAMA. 2009;301(14):1439–50.

    PubMed Central  PubMed  Google Scholar 

  351. Swank AM, et al. Modest increase in peak VO2 is related to better clinical outcomes in chronic heart failure patients: results from heart failure and a controlled trial to investigate outcomes of exercise training. Circ Heart Fail. 2012;5(5):579–85.

    PubMed Central  PubMed  Google Scholar 

  352. Keteyian SJ, et al. Relation between volume of exercise and clinical outcomes in patients with heart failure. J Am Coll Cardiol. 2012;60(19):1899–905.

    PubMed Central  PubMed  Google Scholar 

  353. Davies EJ, et al. Exercise training for systolic heart failure: Cochrane systematic review and meta-analysis. Eur J Heart Fail. 2010;12(7):706–15.

    PubMed Central  PubMed  Google Scholar 

  354. Gary R, Lee S. Physical function and quality of life in older women with diastolic heart failure: effects of a progressive walking program on sleep patterns. Prog Cardiovasc Nurs. 2007;22:9.

    Google Scholar 

  355. Gary RA, et al. Home-based exercise improves functional performance and quality of life in women with diastolic heart failure. Heart Lung. 2004;33(4):210–8.

    PubMed  Google Scholar 

  356. Korzeniowska-Kubacka I, et al. Influence of exercise training on left ventricular diastolic function and its relationship to exercise capacity in patients after myocardial infarction. Cardiol J. 2010;17:7.

    Google Scholar 

  357. Malonado-Martin S, et al. Assessment of ventilatory responses after exercise training in elderly patients with diastolic heart failure. J Cardiopulm Rehabil Prev. 2008;28:2.

    Google Scholar 

  358. Kitzman DW. Exercise training in heart failure with preserved ejection fraction: beyond proof-of-concept. J Am Coll Cardiol. 2011;58(17):1792–4.

    PubMed  Google Scholar 

  359. Smart N, et al. Exercise training in systolic and diastolic dysfunction: effects on cardiac function, functional capacity, and quality of life. Am Heart J. 2007;153(4):530–6.

    PubMed  Google Scholar 

  360. Kitzman D, et al. Exercise training in older patients with heart failure and preserved ejection fraction: a randomized, controlled, single-blind trial. Circ Heart Fail. 2011;3:9.

    Google Scholar 

  361. Fujimoto N, et al. Cardiovascular effects of 1 year of progressive endurance exercise training in patients with heart failure with preserved ejection fraction. Am Heart J. 2012;164(6):869–77.

    PubMed  Google Scholar 

  362. de Filippi CR, et al. Physical activity, change in biomarkers of myocardial stress and injury, and subsequent heart failure risk in older adults. J Am Coll Cardiol. 2012;60(24):2539–47.

    Google Scholar 

  363. Gielen S, Hambrecth R. Effects of exercise training on vascular function and myocardial perfusion. Cardiol Clin. 2001;19:357–68.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel E. Forman MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag London

About this chapter

Cite this chapter

Schopfer, D.W., Khera, A., Levine, B., Forman, D.E. (2015). Preventive Cardiology: The Effects of Exercise. In: Willerson, J., Holmes, Jr., D. (eds) Coronary Artery Disease. Cardiovascular Medicine. Springer, London. https://doi.org/10.1007/978-1-4471-2828-1_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2828-1_28

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2827-4

  • Online ISBN: 978-1-4471-2828-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics