Skip to main content
Log in

Management of Hyperglycaemia After Pancreas Transplantation

Are New Immunosuppressants the Answer?

  • Current Opinion
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

Pancreas transplantation is considered the optimal therapy for patients with diabetes mellitus who reach end-stage renal disease. Despite achievement of euglycaemia after this procedure, the progression to impaired pancreatic function and metabolic exhaustion still represents one of the major concerns that increase the risk of graft loss. This paper reviews the possible mechanisms that can induce post-transplant hyperglycaemia, including those related to immunosuppression and those non-related, and the new strategies available for minimising or preventing this complication.

Different aetiologies can induce pancreatic dysfunction. Technical complications, acute pancreatitis and delayed graft function, mostly related to impaired insulin secretion, are considered the early causes for abnormal glucose control. In general, acute rejection does not affect the endocrine portion of the pancreas graft because islet destruction occurs later than the inflammation of the exocrine components. Hyperinsulinaemia and insulin resistance represent the main concern for the progression of blood glucose intolerance. The anastomotic techniques of the exocrine portion of the pancreas and the immunosuppressive regimens are of critical importance for the development of impaired glucose metabolism. Hyperinsulinaemia, as a result of the fact that systemic-enteric or systemic-bladder drainages reducing the hepatic clearance of insulin, has led to the introduction of more physiological techniques using portal drainage of the endocrine secretions. Experimental and clinical data have shown that many of the current immunosuppressants account, to a large degree, for the increased risk of the development of post-transplant hyperglycaemia. The most common maintenance regimen in pancreatic transplantation still consists of triple therapy with a combination of corticosteroids, calcineurin inhibitors (either ciclosporin [cyclosporine] or tacrolimus), and mycophenolate mofetil (MMF).

The diabetogenic effects of corticosteroids and calcineurin inhibitors have resulted in the need for protocols able to minimise their use. Recent studies have shown the safety and efficacy of steroid-sparing or -free regimens. Sirolimus has shown powerful immunosuppressive potency in absence of nephrotoxicity and diabetogenicity. Multicentre and single-centre reports have demonstrated that both calcineurin inhibitor withdrawal and avoidance were possible when sirolimus was used in a concentration-controlled fashion, with low-dose corticosteroids and MMF. Although the experience with sirolimus in pancreatic transplantation is still limited, the results are promising. Patients affected by diabetic gastroparesis seem to better tolerate a regimen with sirolimus and low-dose tacrolimus than one with tacrolimus in combination with MMF.

For successful, long-term results of pancreatic transplantation, it is crucial to combine donor selection, technical aspects, modified anastomotic techniques and new therapeutic approaches designed to minimise the metabolic and non-metabolic adverse effects of the immunosuppressive regimens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I
Table II

Similar content being viewed by others

References

  1. American Diabetes Association. Clinical practice recommendations. Diabetes Care 1999; 22: S1–114

    Article  Google Scholar 

  2. Gerik JE. Type 2 diabetes mellitus as a heterogeneous disorder: implications for treatment. Mayo Clin Proc 2003; 78(4): 447–56

    Article  Google Scholar 

  3. Goran MI, Ball GDC, Cruz ML. Obesity and risk for type 2 diabetes and cardiovascular disease in children and adolescents. J Clin Endocrinol Metab 2003; 88(4): 1417–27

    Article  PubMed  CAS  Google Scholar 

  4. Dandona P, Aljada A, Chaudhuri A, et al. The potential influence of inflammation and insulin resistance on the pathogenesis and treatment of atherosclerosis-related complications in type 2 diabetes. J Clin Endocrinol Metab 2003; 88(6): 2422–9

    Article  PubMed  CAS  Google Scholar 

  5. Hakim N, Stratta RJ, Gray D, editors. Pancreas and islets transplantation. New York: Oxford University Press Inc., 2002

    Google Scholar 

  6. Light JA, Sasaki TM, Currier CB, et al. Successful long-term kidney-pancreas transplants regardless of C-peptide status or race. Transplantation 2001; 71: 152–4

    Article  PubMed  CAS  Google Scholar 

  7. Pox C, Ritzel R, Büsing M, et al. Combined pancreas and kidney transplantation in a lean type 2 diabetic patients: effect on insulin secretion and sensitivity. Exp Clin Endocrinol Diabetes 2002; 110: 420–4

    Article  PubMed  CAS  Google Scholar 

  8. Ketel B, Henry ML, Elkhammas EA, et al. Metabolic complications in combined kidney/pancreas transplantation. Transplant Proc 1992; 24: 774–5

    PubMed  CAS  Google Scholar 

  9. Pfeffer F, Naucj MA, Benz S, et al. Determinants of a normal (versus impaired) oral glucose tolerance after combined pancreas-kidney transplantation in IDDM patients. Diabetologia 1996; 39: 462–8

    Article  PubMed  CAS  Google Scholar 

  10. Battezzati A, Benedini S, Caldara R, et al. Prediction of the long-term metabolic success of the pancreatic graft function. Transplantation 2001; 71: 1560–6

    Article  PubMed  CAS  Google Scholar 

  11. Marchetti P. New-onset diabetes after transplantation. J Heart Lung Transplant 2004; 23 (5 Suppl.): S194–201

    Article  PubMed  Google Scholar 

  12. Weir MR, Fink JC. Risk of posttransplant diabetes mellitus with current immunosuppressive medications. Am J Kidney Dis 1999; 34: 1–13

    Article  PubMed  CAS  Google Scholar 

  13. Cosio FG, Pesavento TE, Osei K, et al. Post-transplant diabetes mellitus: increasing incidence in renal allograft recipients transplanted in recent years. Kidney Int 2001; 59: 732–7

    Article  PubMed  CAS  Google Scholar 

  14. Budde K, Schmouder RL, Brunkhorst R, et al. First human trial of FTY720, a novel immunomodulator, in stable renal transplant patients. J Am Soc Nephrol 2002; 13: 1073–83

    PubMed  CAS  Google Scholar 

  15. Strand V, Cohen S, Schiff M, et al. Treatment of active rheumatoid arthritis with leflunomide compared with placebo and methotrexate: Leflunomide Rheumatoid Arthritis Investigators Group. Arch Intern Med 1999; 159: 1121–8

    Article  Google Scholar 

  16. Hardinger KL, Wang CD, Schnitzler MA, et al. Prospective, pilot, open-label, short-term study of conversion to leflunomide reverses chronic renal allograft dysfunction. Am J Transplant 2002; 29: 867–71

    Article  Google Scholar 

  17. Kahan BD, Karlix JL, Ferguson RM, et al. Pharmacodynamics, pharmacokinetics, and safety of multiple doses of FTY720 in stable renal transplant patients: a multicenter, randomized, placebo-controlled, phase I study. Transplantation 2003; 76: 1079–84

    Article  PubMed  CAS  Google Scholar 

  18. Jindal RM. Posttransplant diabetes mellitus: a review. Transplantation 1994; 58: 1289–98

    PubMed  CAS  Google Scholar 

  19. Gaston RS, Chandrakantan A. Diabetes mellitus after kidney transplantation. Am J Transplant 2003; 3: 512–3

    Article  PubMed  Google Scholar 

  20. The Expert Committee on the Diagnosis and Classification of Diabetes Mellitus. Report of the expert committee on the diagnosis and classification of diabetes mellitus. Diabetes Care 2003; 26 Suppl. 1: S5–S20

    Article  Google Scholar 

  21. First R, Gerber D, Hariharan S, et al. Posttransplant diabetes mellitus in kidney allograft recipients: incidence, risk factors and management. Transplantation 2002; 73: 379–86

    Article  PubMed  Google Scholar 

  22. Caronia S, Taylor K, Pagliaro L. Further evidence for an association between non insulin dependent diabetes mellitus and chronic hepatitis C virus infection. Hepatology 1999; 30: 1059–63

    Article  PubMed  CAS  Google Scholar 

  23. Yildiz A, Tutuncu Y, Yazici H, et al. Association between hepatitis C virus infection and development of post transplant diabetes in renal transplant patients on tacrolimus. Transplantation 2002; 74: 1109–13

    Article  PubMed  Google Scholar 

  24. Bloom RD, Rao V, Weng F, et al. Association of hepatitis C with post transplant diabetes in renal transplant recipients on tacrolimus. J Am Soc Nephrol 2002; 13: 1374–80

    Article  PubMed  Google Scholar 

  25. Honaker MR, Stratta RJ, Lo A, et al. Impact of hepatitis C virus status in pancreas transplantation: a case control study. Clin Transplant 2002; 16: 243–51

    Article  PubMed  Google Scholar 

  26. Heisel O, Heisel R, Balshaw R, et al. New onset diabetes mellitus in patients receiving calcineurin inhibitors: A systematic review and meta-analysis. Am J Transplant 2004; 4: 583–95

    Article  PubMed  Google Scholar 

  27. Davinson J, Wilkinson A, Dantal J, et al. New-onset diabetes after transplantation: 2003 international consensus guidelines. Transplantation 2003; 75: SS3–24

    Article  Google Scholar 

  28. Egidi MF, Stratta RJ, Trofe J, et al. Is the native pancreas more susceptible to abnormalities causing glucose intolerance than the pancreas transplant [abstract]? 7th World Congress of International Pancreas and Islet Transplant Association; 1999 Aug 22–25; Sydney, 102

  29. Humar A, Johnson E, Gillingham KJ, et al. Venous thromboembolic complications after kidney and kidney-pancreas transplantation: a multivariate analysis. Transplantation 1998; 65: 229–34

    Article  PubMed  CAS  Google Scholar 

  30. Kapur S, Bonham CA, Dodson FS, et al. Strategies to expand the donor pool for pancreas transplantation. Transplantation 1999; 67(2): 284–90

    Article  PubMed  CAS  Google Scholar 

  31. Benedetti E, Sileri P, Grussner AC, et al. Surgical complications of pancreas transplantation. In: Hakim N, Stratta RJ, Gray D, editors. Pancreas and islet transplantation. New York: Oxford University Press Inc., 2002: 155–65

    Google Scholar 

  32. Frezza EE, Corry RJ. Donor management and selection for pancreas transplantation. In: Hakim N, Stratta RJ, Gray D, editors. Pancreas and islet transplantation. New York: Oxford University Press Inc., 2002: 79–87

    Google Scholar 

  33. Humar A, Kandaswamy R, Drangstveit B, et al. Prolonged preservation increases surgical complications after pancreas transplants. Surgery 2000; 127: 545–51

    Article  PubMed  CAS  Google Scholar 

  34. Tamsma JT, Schaapherder AFM, van Bronswijk H, et al. Islet cell hormone release immediately after human pancreatic transplantation. Transplantation 1993; 56: 1119–23

    Article  PubMed  CAS  Google Scholar 

  35. Troppmann C, Gruessner A, Papalois BE, et al. Delayed endocrine pancreas graft function after simultaneous pancreaskidney transplantation. Transplantation 1996; 61: 1323–30

    Article  PubMed  CAS  Google Scholar 

  36. Tan M, Kandaswamy R, Sutherland DER, et al. Risks factors and impact of delayed graft function after pancreas transplants. Am J Transplant 2004; 4: 758–62

    Article  PubMed  Google Scholar 

  37. Zimmerman T, Horber F, Rodriguez N, et al. Contribution of insulin resistance to catabolic effects of prednisone on leucine metabolism in humans. Diabetes 1989; 38: 1238–44

    Article  PubMed  CAS  Google Scholar 

  38. Miyazaki Y, He H, Mandarino LJ, et al. Rosiglitazone improves downstream insulin receptor signaling in type 2 diabetic patients. Diabetes 2003; 52: 1943–50

    Article  PubMed  CAS  Google Scholar 

  39. Douzdjian V, Cooper JL, Abecassis MM, et al. Markers for pancreatic allograft rejection: comparison of serum anodal tripsinogen, serum amylase, serum creatinine and urinary amylase. Clin Transplant 1994; 8: 79–82

    PubMed  CAS  Google Scholar 

  40. Sugitani A, Egidi MF, Gritsch HA, et al. Serum lipase as a marker for pancreatic rejection. Clin Transplant 1998; 12: 175–83

    Google Scholar 

  41. Shapiro R, Jordan ML, Scantlebury VP, et al. Renal allograft rejection with normal renal function in simultaneous kidney/ pancreas recipients: does dissynchronous rejection really exists? Transplantation 2000; 69(3): 440–1

    Article  PubMed  CAS  Google Scholar 

  42. Papadimitriou JC, Drachenberg CB. Role of histopathology in pancreas transplantation. Curr Opin Organ Transplant 2002; 7: 185–90

    Article  Google Scholar 

  43. Gaber LW, Egidi MF. Surveillance and monitoring of pancreas allografts. Curr Opin Organ Transplant 2002; 7: 191–5

    Article  Google Scholar 

  44. Egidi MF, Shapiro R, Khanna A, et al. Fine-needle aspiration biopsy in pancreatic transplantation. Transplant Proc 1995; 27: 3055–6

    PubMed  CAS  Google Scholar 

  45. Esmajies E, Rodriguez-Villar C, Richart MJ, et al. Recurrence of immunological markers for type 1 (insulin-dependent) diabetes mellitus in immunosuppressed patients after pancreas transplantation. Transplantation 1998; 66: 128–31

    Article  Google Scholar 

  46. Braghi S, Bonifacio E, Secchi A, et al. Modulation of humoral islet autoimmunity by pancreas allotransplantation influences allograft outcome in patients with type 1 diabetes. Diabetes 2000; 49: 218–24

    Article  PubMed  CAS  Google Scholar 

  47. Yoon JW, Yoon CS, Lim HW, et al. Control of autoimmune diabetes in NOD mice by GAD expression or suppression in β-cells. Science 1999; 284: 1183–7

    Article  PubMed  CAS  Google Scholar 

  48. Burke G, Ciancio G, Miller J, et al. Hyperglycemia occurring 5–8 years after simultaneous pancreas-kidney (SPK) transplantation associated with the prior development of islet cell antibodies [abstract no. 889]. Am J Transplant 2003; 3 Suppl. 5: 380

    Google Scholar 

  49. Dupre J, Stiller CR, Gent M, et al. Clinical trials of cyclosporin in IDDM. Diabetes Care 1988; 11 Suppl. 1: 37–44

    PubMed  Google Scholar 

  50. Murase N, Lieberman I, Nalesnik MA, et al. Effects of FK506 on spontaneous diabetes in BB rats. Diabetes 1990; 39: 1584–6

    Article  PubMed  CAS  Google Scholar 

  51. Martel RR, Klicious J, Galet S. Inhibition of the immune response by rapamycin, a new antifungal antibiotic. Can J Physiol Pharmacol 1977; 55: 48–51

    Article  PubMed  CAS  Google Scholar 

  52. Luzi L, Secchi A, Facchini F, et al. Reduction of insulin resistance by combined kidney-pancreas transplantation in type 1 (insulin-dependent) diabetic patients. Acta Diabetologica 1990; 33: 549–56

    Article  CAS  Google Scholar 

  53. Diem P, Abid M, Redmon JB, et al. Systemic venous drainage of pancreas allografts as independent cause of hyperinsulinemia in type 1 diabetic recipients. Diabetes 1990; 39: 534–40

    Article  PubMed  CAS  Google Scholar 

  54. Widerman L, Elahi D, Hanks J. Whole organ transplantation and glucose regulation. World J Surg 2001; 25: 516–22

    Article  Google Scholar 

  55. Gaber AO, Shokouh-Amiri H, Hathaway DK, et al. Results of pancreas transplantation with portal venous and enteric drainage. Ann Surg 1995; 221: 613–24

    Article  PubMed  CAS  Google Scholar 

  56. Tajra LC, Martin X, Benchaid M, et al. Long-term metabolic control in pancreas transplant patients according to three techniques. Transplant Proc 1998; 30: 268–9

    Article  PubMed  CAS  Google Scholar 

  57. Shokouh-Amiri MH, Rahimi-Saber S, Andersen AJ. Segmental pancreatic autotransplantation in the pig. Transplantation 1989; 47: 42–4

    Article  PubMed  CAS  Google Scholar 

  58. Philosophe B. Portal versus systemic delivery of insulin: immunologic benefits for pancreas transplantation. Curr Opin Organ Transplant 2002; 7: 180–4

    Article  Google Scholar 

  59. Nymann T, Hathaway DK, Shokouh-Amiri MH, et al. Patterns of acute rejection in portal-enteric versus systemic-bladder pancreas-kidney transplantation. Clin Transplant 1998; 12: 15–83

    Google Scholar 

  60. Christiansen E, Vestergaard H, Tibell A, et al. Impaired insulin-stimulated nonoxidative glucose metabolism in pancreas-kidney transplant recipients. Diabetes 1996; 45: 1267–75

    Article  PubMed  CAS  Google Scholar 

  61. Luzi L, Battezzati A, Perseghin GL, et al. Lack of feedback inhibition of insulin secretion in denervated human pancreas. Diabetes 1992; 41: 1632–9

    Article  PubMed  CAS  Google Scholar 

  62. Berry SM, Friend LA, McFadden DW, et al. Pancreatic denervation does not influence glucose-induced insulin response. Surgery 1994; 116: 67–75

    PubMed  CAS  Google Scholar 

  63. Bewick M, Mundy AR, Eaton B, et al. Endocrine function of the heterotopic pancreatic allotransplantation in dogs. III: the causes of hyperinsulinemia. Transplantation 1981; 31: 23–5

    CAS  Google Scholar 

  64. Borch-Johnsen K, Colangiuri S, Balkau B, et al. Creating a pandemic of prediabetes: the proposed new diagnostic criteria for impaired fasting glycemia. Diabetologia 2004; 47: 1396–402

    Article  PubMed  CAS  Google Scholar 

  65. Arner P, Gunnarsson R, Blomdahl G, et al. Some characteristics of steroid diabetes: a study in renal transplant recipients receiving high dose corticosteroid therapy. Diabetes Care 1983; 6: 23–5

    Article  PubMed  CAS  Google Scholar 

  66. Gunnarsson R, Lundgren G, Magnusson G, et al. Steroid diabetes: a sign of overtreatment with steroids in the renal graft recipients? Scand J Urol Nephrol Suppl 1980; 54: 135–8

    PubMed  CAS  Google Scholar 

  67. Hricik DE, Bartucci MR, Moir EJ, et al. Effects of steroid withdrawal on posttransplant diabetes mellitus in cyclosporine-treated renal transplant recipients. Transplantation 1991; 51: 374–7

    Article  PubMed  CAS  Google Scholar 

  68. Schulak JA, Mayes JT, Moritz CE, et al. A prospective randomized trial of prednisone versus no predinisone maintenance therapy in cyclosporine-treated and azathioprine-treated renal transplant patients. Transplantation 1990; 49: 327–32

    Article  PubMed  CAS  Google Scholar 

  69. Ahsan N, Hricik D, Matas A, et al. Prednisone withdrawal in kidney transplant recipients on cyclosporine and mycophenolate mofetil: a prospective randomized study. Transplantation 1999; 68: 1865–74

    Article  PubMed  CAS  Google Scholar 

  70. Jordan ML, Chakrabarti P, Luke P, et al. Results of pancreas transplantation after steroid withdrawal under tacrolimus immunosuppression. Transplantation 2000; 69: 265–71

    Article  PubMed  CAS  Google Scholar 

  71. MacDonald A. Improving tolerability of immunosuppressive regimens. Transplantation 2001; 72 (12 Suppl.): S105–12

    PubMed  CAS  Google Scholar 

  72. Kaufman DB, Leventhal JR, Koffron AJ, et al. A prospective study of rapid corticosteroid elimination in simultaneous pancreas-kidney transplantation: comparison of two maintenance immunosuppression protocols: tacrolimus/mycophenolate mofetil versus tacrolimus/sirolimus. Transplantation 2002; 73: 169–77

    Article  PubMed  CAS  Google Scholar 

  73. Cantarovich D, Giral-Classe M, Hourmant M, et al. Low incidence of kidney rejection after simultaneous kidney-pancreas transplantation after antithymocyte globulin induction and in absence of corticosteroids: results of a prospective pilot study in 28 consecutive cases. Transplantation 2000; 69: 1505–8

    Article  PubMed  CAS  Google Scholar 

  74. Almawi WY, Lipman ML, Stevens AC, et al. Abrogation of glucocorticoid mediated inhibition of T-cell proliferation by the synergistic action of IL-1, IL-6 and IFN-gamma. J Immunol 1991; 146: 3523–7

    PubMed  CAS  Google Scholar 

  75. Shapiro AMJ, Lakey JRT, Ryan EA, et al. Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. N Engl J Med 2000; 343: 230–8

    Article  PubMed  CAS  Google Scholar 

  76. Kenyon NS. Experimental approaches to the prevention of islet rejection. In: Hakim N, Stratta RJ, Gray D, editors. Pancreas and islet transplantation. New York: Oxford University Press Inc., 2002: 339–53

    Google Scholar 

  77. Ericzon BG, Wijnen RMH, Tiebosh A, et al. The effects of FK506 treatment on pancreaticoduodenal allotransplantation in the primate. Transplantation 1992; 53: 1184–9

    Article  PubMed  CAS  Google Scholar 

  78. Kasiske BL, Snyder JJ, Gilbertson D, et al. Diabetes mellitus after kidney transplantation in the United States. Am J Transplant; 2003; 3: 178–85

    Article  PubMed  Google Scholar 

  79. Cosio FG, Pesavento TE, Kim S, et al. Patient survival after renal transplantation. IV: impact of post-transplant diabetes. Kidney Int 2002; 62: 1440–6

    Google Scholar 

  80. Krausz Y, Wollheim CB, Siegel E, et al. Possible role for calmodulin in insulin release: studies with trifluperazine in the rat pancreatic islets. J Clin Invest 1980; 66: 603–7

    Article  PubMed  CAS  Google Scholar 

  81. Harding MW, Galat A, Uehling DE, et al. A receptor for the immunosuppressant FK506 is a cis-transpeptidyl-propyl isomerase. Nature 1989; 341: 758–60

    Article  PubMed  CAS  Google Scholar 

  82. Pirsch J, Miller J, Deierhoi M, et al. A comparison of tacrolimus (FK506) and cyclosporine for immunosuppression after cadaveric renal transplantation: FK506 Kidney Transplant Study Group. Transplantation 1997; 63: 977–83

    Article  PubMed  CAS  Google Scholar 

  83. Woo M, Przepiorka D, Ippoliti C, et al. Toxicities of tacrolimus and cyclosporin A after allogenic blood stem cell transplantation. Bone Marrow Transplant 1997; 20: 1095–8

    Article  PubMed  CAS  Google Scholar 

  84. Drachenberg CB, Klassen DK, Weir MR, et al. Islet cell damage associated with tacrolimus and cyclosporine: morphological features in pancreas allograft biopsies and clinical correlation. Transplantation 1999; 68: 396–402

    Article  PubMed  CAS  Google Scholar 

  85. Vincenti F, Jensik SK, Filo RS, et al. A long-term comparison of tacrolimus (FK506) and cyclosporine in kidney transplantation: evidence for improved allograft survival at five years. Transplantation 2002; 73: 775–82

    Article  PubMed  CAS  Google Scholar 

  86. Elmer DS, Abdulkarim AB, Fraga D, et al. Metabolic effects of FK506 (tacrolimus) versus cyclosporine in portally drained pancreas allografts. Transpl Proc 1998; 30: 523–4

    Article  CAS  Google Scholar 

  87. Dieterle C, Schmauss S, Veitenhasl M, et al. Glucose metabolism after pancreas transplantation: cyclosporine versus tacrolimus. Transplantation 2004; 77: 1561–5

    Article  PubMed  CAS  Google Scholar 

  88. Egidi MF, Trofe J, Stratta RJ, et al. Glucose control in pancreas transplants: comparative study among anastomotic techniques [abstract]. 7th World Congress of International Pancreas and Islet Transplant Association; 1999 Aug 22–25; Sydney, 72

  89. Vincenti F, Ramos E, Brattstrom C, et al. Multicenter trial exploring calcineurin inhibitors avoidance in renal transplantation. Transplantation 2001; 71: 1282–7

    Article  PubMed  CAS  Google Scholar 

  90. Kreis H, Oberbauer R, Campistol J, et al. Long-term benefits with sirolimus-based therapy after early cyclosporin withdrawal. J Am Soc Nephrol 2004; 15: 809–17

    Article  PubMed  CAS  Google Scholar 

  91. Stratta RJ, Alloway RR, Lo A, et al. Two-dose daclizumab regimen in simultaneous kidney-pancreas transplant recipients: primary endpoint analysis of a multicenter, randomized study. Transplantation 2003; 75: 1260–6

    Article  PubMed  CAS  Google Scholar 

  92. Gruessner AC, Sutherland DER. Pancreas transplant outcomes for United States (US) and non-US cases as reported to the United Network for Organ Sharing (UNOS) and the International Pancreas Transplant Registry (IPTR) as of October 2002. Clin Transpl 2002, 41–77

  93. Kaufman DB, Iii GW, Bruce DS, et al. Prospective, randomized, multi-center trial of antibody induction therapy in simultaneous pancreas-kidney transplantation. Am J Transplant 2003; 3: 855–64

    Article  PubMed  Google Scholar 

  94. Kirk AD, Hale DA, Mannon RB, et al. Results from a human renal allograft tolerance trial evaluating the humanized CD52-specific monoclonal antibody Alemtuzumab (Campath-1H). Transplantation 2003; 76: 120–9

    Article  PubMed  CAS  Google Scholar 

  95. Knechtle SJ, Pirsch JD, Flechner Jr J, et al. Campath-1H induction plus rapamycin monotherapy for renal transplantation: results of a pilot study. Am J Transplant 2003; 3: 722–30

    Article  PubMed  CAS  Google Scholar 

  96. Sutherland DER. Immunosuppression for Beta-cell replacement to restore or enhance endogenous insulin secretion by transplantation in diabetic recipients [abstract]. Transplant Immunosuppression 2003: the Continuing Challenges; 2003 Oct 1–4; Minneapolis, 234–44

  97. Stratta RJ. Review of immunosuppressive usage in pancreas transplantation. Clin Transplant 1999; 13: 1–12

    Article  PubMed  CAS  Google Scholar 

  98. Halloran P, Mathew T, Tomlanovich S, et al. Mycophenolate mofetil in renal allograft recipients: a pooled efficacy analysis of three randomized, double-blind, clinical studies in prevention of rejection: the International Mycophenolate Mofetil Renal Transplant Study Groups. Transplantation 1997; 63: 39–47

    Article  PubMed  CAS  Google Scholar 

  99. Williams JW, Mital D, Chong A, et al. Experience with leflunomide in solid organ transplantation. Transplantation 2002; 73: 358–66

    Article  PubMed  CAS  Google Scholar 

  100. Wennberg L, Karlsson-Parra A, Sunderberg B, et al. Efficacy of immunosuppressive drugs in islet xenotransplantation: leflunomide in combination with cyclosporine and mycophenolate mofetil prevents islet xenograft rejection in pig-to-rat model. Transplantation 1997; 63: 1234–42

    Article  PubMed  CAS  Google Scholar 

  101. Guo Z, Chong AS, Shen J, et al. Prolongation of rat islet allograft survival by the immunosuppressive agent leflunomide. Transplantation 1997; 63: 711–6

    Article  PubMed  CAS  Google Scholar 

  102. Stepkowski SM, Wang M, Qu X, et al. Synergistic interaction of FTY720 with cyclosporine or sirolimus to prolong heart allograft survival. Transpl Proc 1998; 30: 2214–6

    Article  CAS  Google Scholar 

  103. Kahan BD, Kaplan B, Lorber M, et al. RAD in the novo renal transplantation: comparison of three doses on the incidence and severity of acute rejection. Transplantation 2001; 71: 1400–6

    Article  PubMed  CAS  Google Scholar 

  104. MacDonald AS. A worldwide, phase III, randomized, controlled, safety and efficacy study of a sirolimus/cyclosporine regimen for prevention of acute rejection in recipients of primary mismatched renal allografts. Transplantation 2001; 71: 271–80

    Article  PubMed  CAS  Google Scholar 

  105. Flechner SM, Goldfarb D, Modlin C, et al. Kidney transplantation without calcineurin inhibitor drugs: a prospective, randomized trial of sirolimus versus cyclosporine. Transplantation 2002; 74: 1070–6

    Article  PubMed  CAS  Google Scholar 

  106. Sehgal SN. Sirolimus: its discovery, biological properties, and mechanism of action. Transpl Proc 2003; 35 (3 Suppl.): 7S–14S

    Article  CAS  Google Scholar 

  107. Takano A, Usui I, Haruta T, et al. Mammalian target of rapamycin pathway regulates insulin signaling via subcellular redistribution of insulin receptor substrate 1 and integrates nutritional signals and metabolic signals of insulin. Mol Cell Biol 2001; 21: 5050–62

    Article  PubMed  CAS  Google Scholar 

  108. Haruta T, Uno T, Kawahara J, et al. A rapamycin-sensitive pathway down-regulate insulin signaling via phosphorylation and proteosomal degradation of insulin receptor substrate-1. Mol Endocrinol 2000; 14: 783–94

    Article  PubMed  CAS  Google Scholar 

  109. Hong JC, Kahan BD. Sirolimus-induced thrombocytopenia and leukopenia in renal transplant recipients: risk factors, incidence, progression and management. Transplantation 2000; 69: 2085–90

    Article  PubMed  CAS  Google Scholar 

  110. Hoogeveen RC, Ballantyne CM, Pownall HJ, et al. Effects of sirolimus on the metabolisms of apoB100-containing lipoproteins in renal transplant patients. Transplantation 2001; 72: 1244–50

    Article  PubMed  CAS  Google Scholar 

  111. Chueh SC, Kahan BD. Dyslipidemia in renal transplant recipients treated with a sirolimus and cyclosporine-based immunosuppressive regimen: incidence, risk factors, progression, and prognosis. Transplantation 2003; 76: 375–82

    Article  PubMed  CAS  Google Scholar 

  112. Salazar A, McAlister VC, Kiberd VA, et al. Sirolimus-tacrolimus combination for combined kidney-pancreas transplantation: effect on renal function. Transplant Proc 2001; 33: 1038–9

    Article  PubMed  CAS  Google Scholar 

  113. Freise CE, Kang SM, Feng S, et al. Excellent short-term results with steroid-free maintenance immunosuppression in low-risk simultaneous pancreas-kidney transplantation. Arch Surg 2003; 138: 1121–6

    Article  PubMed  Google Scholar 

  114. MacDonald AS. Rapamycin in combination with cyclosporine or tacrolimus in liver, pancreas, and kidney transplantation. Transplant Proc 2003; 35 (3 Suppl.): 183S–6S

    Article  Google Scholar 

  115. Vincenti F, Stock P. De novo use of sirolimus in immunosuppression regimens in kidney and kidney-pancreas transplantation at the university of California, San Francisco. Transplant Proc 2003; 35 (3 Suppl.): 183S–6S

    Article  PubMed  CAS  Google Scholar 

  116. Egidi MF, Cowan PA, Naseer A, et al. Conversion to sirolimus in solid organ transplantation: a single center experience. Transplant Proc 2003; 35 (3 Suppl.): 131S–7S

    Article  PubMed  CAS  Google Scholar 

  117. Lo A, Egidi MF, Gaber LW, et al. Observations regarding the use of sirolimus and tacrolimus in high-risk renal transplant recipients. Clin Transplant 2004; 18: 53–61

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

No sources of funding were used to assist in the preparation of this manuscript. The author has no conflicts of interest that are directly relevant to the content of this review.

The author would like to acknowledge Dr R.B. Canada for editing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesca M. Egidi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Egidi, F.M. Management of Hyperglycaemia After Pancreas Transplantation. Drugs 65, 153–166 (2005). https://doi.org/10.2165/00003495-200565020-00001

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003495-200565020-00001

Keywords

Navigation