Skip to main content
Log in

Determinants of a normal (versus impaired) oral glucose tolerance after combined pancreas-kidney transplantation in IDDM patients

  • Originals
  • Published:
Diabetologia Aims and scope Submit manuscript

Summary

After successful pancreas transplantation, insulin-dependent diabetic patients are characterized by a normal or at worst impaired oral glucose tolerance (World Health Organisation criteria). It is not known which pathophysiological mechanisms cause the difference between normal and impaired oral glucose tolerance. Therefore, we studied 41 patients after successful combined pancreas-kidney transplantation using stimulation in the fasting state with oral glucose (75 g), intravenous glucose (0.33 g/kg) and glucagon bolus injection (1 mg i.v.). Glucose (glucose oxidase), insulin and C-peptide (immunoassay) were measured. Repeated-measures analysis of variance and multiple regression analysis were used to analyse the results which showed: 28 patients had a normal, and 13 patients had an impaired oral glucose tolerance. Impaired oral glucose tolerance was associated with a greatly reduced early phase insulin secretory response (insulin p<0.0001; C-peptide p=0.037). Age (p=0.65), body mass index (p=0.94), immunosuppressive therapy (cyclosporin A p=0.84; predniso(lo)ne p=0.91; azathioprine p=0.60) and additional clinical parameters were not different. Reduced insulin secretory responses in patients with impaired oral glucose tolerance were also found with intravenous glucose or glucagon stimulations. Exocrine secretion (α-amylase in 24-h urine collections) also demonstrated reduced pancreatic function in these patients (−46%; p=0.04). Multiple regression analysis showed a significant correlation of 120-min glucose with ischaemia time (p=0.003) and the number of HLA-DR mismatches (p=0.026), but not with HLA-AB-mismatches (p=0.084). In conclusion, the pathophysiological basis of impaired oral glucose tolerance after pancreas transplantation is a reduced insulin secretory capacity. Transplant damage is most likely caused by perioperative influences (ischaemia) and by the extent of rejection damage related, for example, to DR-mismatches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BMI:

Body mass index

HLA:

human leucocyte antigen

IGT:

impaired oral glucose tolerance

NGT:

normal oral glucose tolerance

RM-ANOVA:

repeated measures analysis of variance

WHO:

World Health Organisation

IDDM:

insulin-dependent diabetes mellitus

References

  1. Robertson RP (1991) Pancreas transplantation in humans with diabetes mellitus. Diabetes 40: 1085–1089

    PubMed  Google Scholar 

  2. Sutherland DER (1992) Pancreas transplantation: indications and outcomes. Acta Diabetol 28: 185–188

    PubMed  Google Scholar 

  3. Editorial (1990) Transplantation or insulin? Lancet 335: 1371–1372

    Google Scholar 

  4. östman J, Bolinder J, Gunnarsson R, Brattström C, Tyden G, Wahren J, Groth CG (1989) Effects of pancreas transplantation on the metabolic and hormonal profiles in IDDM patients. Diabetes 38 [Suppl 1]: 88–93

    PubMed  Google Scholar 

  5. Pozza G, Bosi E, Secchi A et al. (1985) Metabolic control in type 1 (insulin-dependent) diabetes after pancreas transplantation. BMJ 291: 510–513

    PubMed  Google Scholar 

  6. Nghiem D, Corry R (1987) Technique of simultaneous renal-pancreaticoduodenal transplantation with urinary drainage of pancreatic secretion. Am J Surg 153: 405–406

    Article  PubMed  Google Scholar 

  7. Hopt UT, Büsing M, Schareck WD, Becker HD (1991) The bladder drainage technique in pancreas transplantation: the Tübingen experience. Diabetologia 34 [Suppl 1]: 24–28

    Google Scholar 

  8. Landgraf R, Nusser J, Müller W et al. (1989) Fate of late complications in type 1 diabetic patients after successful pancreas-kidney transplantation. Diabetes 38 [Suppl 1]: 33–37

    PubMed  Google Scholar 

  9. World Health Organization (1985) Technical report series No. 727

  10. Nauck M, Büsing M, Siegel EG et al. (1991) Consequences of systemic venous drainage and denervation of heterotopic pancreatic transplants for insulin/C-peptide profiles in the basal state and after oral glucose. Diabetologia 34 [Suppl 2]: 81–85

    PubMed  Google Scholar 

  11. Katz H, Homan M, Velosa J, Robertson P, Rizza R (1991) Effects of pancreas transplantation on postprandial glucose metabolism. N Engl J Med 325: 1278–1283

    PubMed  Google Scholar 

  12. Nauck MA, Büsing M, Siegel EG et al. (1992) Basal and nutrient-stimulated pancreatic and gastrointestinal hormone concentrations in type-1 diabetic patients after successful combined pancreas and kidney transplantation. Clin Invest 70: 40–48

    Google Scholar 

  13. Nauck MA, Büsing M, Ørskov C et al. (1993) Preserved incretin effect in type 1-diabetic patients with end-stage nephropathy treated by combined heterotopic pancreas and kidney transplantation. Acta Diabetol 30: 39–45

    PubMed  Google Scholar 

  14. Pfeffer F, Büsing M, Zink R, Gwodzinski A, Makowiec F (1994) High graft survival and excellent endocrine function after combined pancreas-kidney transplantation: results of a standardized protocol. Transplant Proceed 26: 471–472

    Google Scholar 

  15. Conard V, Franckson JRM, Bastenie PA, Kestens J, Kovaks L (1953) Etude critique du triangle d' hyperglycémie intraveneux chez l'homme normale et détermination d' un coefficient d' assimilation glycidique. Arch Int Pharmacodyn 93: 277–286

    PubMed  Google Scholar 

  16. The Diabetes Control and Complication Trial Research Group (1993) The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med 329: 977–986

    Google Scholar 

  17. Socci C, Falqui L, Davalli AM et al. (1991) Fresh human islet transplantation to replace endocrine function in type 1 diabetic patients. Acta Diabetol 28: 151–157

    PubMed  Google Scholar 

  18. Pyzdrowski KL, Kendall DM, Halter JB, Nakhleh R, Sutherland DER, Robertson RP (1992) Preserved insulin secretion and insulin independence in recipients of islet autografts. N Engl J Med 327: 220–226

    PubMed  Google Scholar 

  19. Landgraf R, Nusser J, Riepl RL, Fiedler F, Illner W-D, Abendroth D, Land W (1991) Metabolic and hormonal studies of type 1 (insulin-dependent) diabetic patients after successful pancreas and kidney transplantation. Diabetologia 34 [Suppl 1]: S61-S67

    PubMed  Google Scholar 

  20. Golay A, Chen YD, Reaven GM (1986) Effect of differences in glucose tolerance on insulin's ability to regulate carbohydrate and free fatty acid metabolism in obese individuals. J Clin Endocrinol Metab 62: 1081–1088

    PubMed  Google Scholar 

  21. Lillioja S, Mott DM, Howard BV et al. (1988) Impaired glucose tolerance as a disorder of insulin action. Longitudinal and cross-sectional studies in Pima Indians. N Engl J Med 318: 1217–1225

    PubMed  Google Scholar 

  22. Mitrakou A Kelley D, Mokan A, VenemanT, PangburnT, Reilly J, Gerich J (1992) Role of reduced suppression of glucose production and diminished early insulin release in impaired glucose tolerance. N Engl J Med 326: 22–29

    PubMed  Google Scholar 

  23. Beard JC, Halter JB, Best JD, Pfeiffer MA, Porte D Jr (1984) Dexamethasone-induced insulin resistance enhances B cell responsiveness to glucose level in normal men. Am J Physiol 247: E592-E596

    PubMed  Google Scholar 

  24. Pagano G, Cavallo-Perin P, Cassader M et al. (1983) An in vivo and in vitro study of the mechanism of prednisone-induced insulin resistance in healthy subjects. J Clin Invest 72: 1814–1820

    PubMed  Google Scholar 

  25. Luzi L, Secchi A, Facchini F et al. (1990) Reduction of insulin resistance by combined kidney-pancreas transplantation in type 1 (insulin-dependent) diabetic patients. Diabetologia 33: 549–556

    PubMed  Google Scholar 

  26. Büsing M, Hopt UT, Quaken M, Becker HD, Morgenroth K (1993) Morphological studies of graft pancreatitis following pancreas transplantation. B J Surg 80: 1170–1173

    Google Scholar 

  27. Henry ML, Osei K, O'Dorioso TM, Tesi RJ, Ferguson RM (1991) Concomitant reduction in urinary amylase and acute first phase insulin release predict pancreatic allograft rejection in type 1 diabetic recipients. Clin Transpl 5: 112–120

    Google Scholar 

  28. Tydén G, Reinholt F, Bohmann SD, Brattström C, Tibell A, Groth CG (1989) Diagnosis of pancreatic graft rejection by pancreatic juice cytology. Transplant Proc 21: 2780–2781

    PubMed  Google Scholar 

  29. Elahi D, McAllon-Dyke M, Clark B et al. (1993) Sequential evaluation of islet cell responses to glucose in the transplanted pancreas in humans. Am J Surg 165: 15–22

    PubMed  Google Scholar 

  30. Jarrett RJ, Keen H, Fuller JH, McCartney M (1979) Worsening to diabetes in men with impaired glucose tolerance (“borderline diabetes”). Diabetologia 16: 25–30

    PubMed  Google Scholar 

  31. Keen H, Jarrett RJ, McCartney P (1982) The ten-year follow-up of the Bedford survey (1962-1972): glucose tolerance and diabetes. Diabetologia 22: 73–78

    Article  PubMed  Google Scholar 

  32. Jarrett RJ, McCartney P, Keen H (1982) The Bedford survey: ten-year mortality rate in newly diagnosed diabetics, borderline diabetics and normoglycaemic controls and risk indices for coronary heart disease in borderline diabetes. Diabetologia 22: 79–84

    PubMed  Google Scholar 

  33. Faber OK, Binder C (1977) C-peptide response to glucagon — a test for the residual Β cell function in diabetes mellitus. Diabetes 26: 605–610

    PubMed  Google Scholar 

  34. Madsbad S, Krarup T, McNair P, Christiansen C, Faber OK, TransbØl I, Binder C (1981) Practical clinical value of the C-peptide response to glucagon stimulation in the choice of treatment in diabetes mellitus. Acta Med Scand 210: 153–156

    PubMed  Google Scholar 

  35. Cottrell DA, Henry ML, O'Dorioso, Tesi RJ, Ferguson RM, Osei K (1992) Sequential metabolic studies of pancreas allograft function in type 1 diabetic recipients. Diabet Med 9: 438–443

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pfeffer, F., Nauck, M.A., Benz, S. et al. Determinants of a normal (versus impaired) oral glucose tolerance after combined pancreas-kidney transplantation in IDDM patients. Diabetologia 39, 462–468 (1996). https://doi.org/10.1007/BF00400678

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00400678

Keywords

Navigation