Skip to main content

Management of the Failing Pancreas Graft

  • Chapter
  • First Online:
Transplantation of the Pancreas

Abstract

In this chapter, we discuss graft failure, metabolic reserve, and ways to preserve pancreas function. Management of early technical complications using clinical criteria and duplex ultrasound often provides an opportunity for graft salvage. Similarly, successful treatment of acute rejection via careful follow-up and a tissue diagnosis is critical, as the majority of long-term graft losses are immunologic in nature. Despite normal fasting glucose levels, a minority of recipients will demonstrate impaired glucose control early post-transplantation with a larger percentage showing reduced function after 10 years. Beyond monitoring of glucose and hemoglobin A1c (HbA1c) levels, there is a role for routine oral glucose tolerance testing. In the setting of impaired pancreas function, it is reasonable to consider the use of oral hypoglycemic agents, modification of immunosuppression, and lifestyle changes. We herein provide one approach to optimize impaired pancreas function. For many pancreas recipients, there will eventually be a transition back to the use of insulin. With that decision, comes consideration for the place of transplant pancreatectomy and re-transplantation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Niederhaus SV, Carrico RJ, Prentice MA, et al. C-peptide levels do not correlate with pancreas allograft failure: multicenter retrospective analysis and discussion of the new OPTN definition of pancreas allograft failure. Am J Transplant. 2019;19:1178–86.

    Article  CAS  PubMed  Google Scholar 

  2. Humar A, Khwaja K, Rancharan T, et al. Chronic rejection: the next major challenge for pancreas transplant recipients. Transplantation. 2003;76:918–23.

    Article  PubMed  Google Scholar 

  3. Gruessner AC, Gruessner RWG. Pancreas transplantation for patients with type 1 and type 2 diabetes mellitus in the United States: a registry report. Gastroenterol Clin N Am. 2018;47:417–41.

    Article  Google Scholar 

  4. Harbell JW, Morgan T, Feldstein VA, et al. Splenic vein thrombosis following pancreas transplantation: identification of factors that support conservative management. Am J Transplant. 2017;17:2955–62.

    Article  CAS  PubMed  Google Scholar 

  5. Fridell JA, Mangus RS, Mull AB, et al. Early reexploration for suspected thrombosis after pancreas transplantation. Transplantation. 2011;91:902–7.

    Article  PubMed  Google Scholar 

  6. Knight RJ, Rodriguez-Laiz G, Bodian C, Fishbein T. Risk factors for intra-abdominal infection after pancreas transplantation. Am J Surg. 2000;179:99.

    Article  CAS  PubMed  Google Scholar 

  7. Alonso D, Dunn TB, Rigley T, et al. Increased pancreatitis in allografts flushed with histidine-tryptophan-ketoglutarate solution: a cautionary tale. Am J Transplant. 2008;8:1942–5.

    Article  CAS  PubMed  Google Scholar 

  8. Troppman C. Complications after pancreas transplantation. Curr Opin Organ Transplant. 2010;15:112–8.

    Article  Google Scholar 

  9. Nadalin S, Girotti P, Köigsrainer A. Risk factors for and management of graft pancreatitis. Curr Opin Organ Transplant. 2013;18:89–95.

    Article  PubMed  Google Scholar 

  10. Uva PD, Papadimitriou JC, Drachenbery CB, et al. Graft dysfunction in simultaneous pancreas kidney transplantation (SPK): results of concurrent kidney and pancreas allograft biopsies. Am J Transplant. 2018;19:466–74.

    Article  PubMed  Google Scholar 

  11. Aziz F, Parajuli S, Uddin S, et al. How should pancreas transplant rejection be treated? Transplantation. 2019;103:1928–34.

    Article  PubMed  Google Scholar 

  12. Drachenberg CB, Odorico J, Demetris AJ, et al. Banff schema for grading pancreas allograft rejection: working proposal by a multi-disciplinary international consensus panel. Am J Transplant. 2008;8:1237–49.

    Article  CAS  PubMed  Google Scholar 

  13. Neiderhaus SV, Leverson GE, Lorentzen DF, et al. Acute cellular and antibody-mediated rejection of the pancreas allograft: incidence, risk factors and outcomes. Am J Transplant. 2013;13:2945–55.

    Article  Google Scholar 

  14. Parajul S, Bath NM, Aziz F, et al. More than 25 years of pancreas graft survival after simultaneous pancreas and kidney transplantation: experience from the world’s largest series of long-term survivors. Transplantation. 2020;104:1287–93.

    Article  Google Scholar 

  15. Dong M, Parsail AK, Kremers W, et al. Acute pancreas allograft rejection is associated with increased risk of graft failure in pancreas transplantation. Am J Transplant. 2013;13:1019–25.

    Article  CAS  PubMed  Google Scholar 

  16. Wiebe C, Gibson IW, Blydt-Hanses TD, et al. Evolution and clinical pathologic correlations of de novo donor-specific HLA antibody post kidney transplant. Am J Transplant. 2012;12:1157.

    Article  CAS  PubMed  Google Scholar 

  17. Parajuli S, Alagusundaramoorthy S, Aziz F, et al. Outcomes of pancreas transplant recipients with de novo donor-specific antibodies. Transplantation. 2019;103:435–40.

    PubMed  Google Scholar 

  18. Neidlinger N, Singh N, Klein C, et al. Incidence of and risk factors for posttransplant diabetes mellitus after pancreas transplantation. Am J Transplant. 2010;10:398–406.

    Article  CAS  PubMed  Google Scholar 

  19. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment; insulin resistance and β-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28:412–9.

    Article  CAS  PubMed  Google Scholar 

  20. Perseguin G, Caumo A, Piceni Serinie L, Battezzati A, Luzi L. Fasting blood sample-based assessment of insulin sensitivity in kidney-pancreas transplanted patients. Diabetes Care. 2002;25:2207–11.

    Article  Google Scholar 

  21. Robertson RP, Sutherland DER, Lanz KJ. Normoglycemia and preserved insulin secretory reserve in diabetic patients 10-18 years after pancreas transplantation. Diabetes. 1999;48:1737–40.

    Article  CAS  PubMed  Google Scholar 

  22. Pfeffer F, Nauck MA, Benz S, et al. Determinants of a normal (versus impaired) oral glucose tolerance after combined pancreas-kidney transplantation in IDDM patients. Diabetologia. 1996;39:462–8.

    Article  CAS  PubMed  Google Scholar 

  23. Dieterle CD, Veitenhansl M, Butt B, et al. Impaired glucose tolerance in pancreas grafted diabetic patients is due to insulin secretory defects. Exp Clin Endocrinol Diabetes. 2007;115:647–53.

    Article  CAS  PubMed  Google Scholar 

  24. Dieterle CD, Arbogast H, Illner W-D, Schmauss S, Landgruf R. Metabolic follow-up after long-term pancreas graft survival. Eur J Endocrinol. 2007;156:603–10.

    Article  CAS  PubMed  Google Scholar 

  25. Diakoff E. Glucose metabolism after pancreas-kidney transplantation. Curr Diab Rep. 2008;8(4):310–6.

    Article  CAS  PubMed  Google Scholar 

  26. Hult M, Ortsäter H, Schuster G, et al. Short-term glucocorticoid treatment increases insulin secretion in islets derived from lean mice through multiple pathways and mechanisms. Mol Cell Enodrinol. 2009;301:109–16.

    Article  CAS  Google Scholar 

  27. Lambillotte C, Gilon P, Henquin JC. Direct glucocorticoid inhibition of insulin secretion. An in vitro study of dexamethasone effects in mouse islets. J Clin Invest. 1997;99:414–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Øzby LA, Smidt K, Mortensen DM, Carstens J, Jørgensen KA, Rungby J. Cyclosporin and tacrolimus impair insulin secretion and transcriptional regulation in INS-1 E beta cells. Br J Pharmacol. 2011;162:136–46.

    Article  Google Scholar 

  29. Webster AC, Woodroffe RC, Taylor RS, Chapman FR, Craig JC. Tacrolimus versus ciclosporin as primary immunosuppression for kidney transplant recipients: meta-analysis and meta-regression of randomized trial data. BMJ. 2005;331:810.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Vincenti F, et al. Results of an international, randomized trial comparing glucose metabolism disorders and outcome with cyclosporine versus tacrolimus. Am J Transplant. 2007;7:1506–14.

    Article  CAS  PubMed  Google Scholar 

  31. Kandaswamy R, Stock PG, Gustafswon SP, et al. OPTN/SRTR 2016 Annual Data Report: pancreas. Am J Transplant. 2018;18(Suppl 1):114–71.

    Article  PubMed  Google Scholar 

  32. Heisel O, Heisel R, Balshaw R, Keown P. New onset diabetes mellitus in patients receiving calcineurin inhibitors: a systematic review and meta-analysis. Am J Transplant. 2004;4(4):583–95.

    Article  PubMed  Google Scholar 

  33. Woodle ES, First MR, Pirsch J, et al. A prospective, randomized double-blind, placebo-controlled multicenter trial comparing early (7 day) corticosteroid cessation versus long-term, low-dose corticosteroid therapy. Ann Surg. 2008;248(4):564–77.

    Article  PubMed  Google Scholar 

  34. Bechstein WO, Malaise J, Saudek F, et al. Efficacy and safety of tacrolimus compared with cyclosporine microemulsion in primary simultaneous pancreas-kidney transplantation: 1-year results of a large multicenter trial. Transplantation. 2004;77:1221–8.

    Article  CAS  PubMed  Google Scholar 

  35. Secchi A, Malaise J, Caldara R, Euro-SPK Study Group. Metabolic results 3 years after simultaneous pancreas-kidney transplantation. Nephrol Dial Transplant. 2005;20(Suppl 2):18–24.

    Article  Google Scholar 

  36. Dieterle CD, Schmauss S, Veitenhansl M, Gutt B, et al. Glucose metabolism after pancreas transplantation: cyclosporine versus tacrolimus. Transplantation. 2004;77:1561–5.

    Article  CAS  PubMed  Google Scholar 

  37. Silicani Ribeiro R, Cristelli M, Amor AA, et al. The effect of corticosteroid withdrawal on glucose metabolism and anti-GAD antibodies in simultaneous pancreas-kidney transplant patients. Prog Transplant. 2016;26(3):249–54.

    Article  Google Scholar 

  38. Barlow AD, Nicholson ML, Hervert TP. Evidence for rapamycin toxicity in pancreatic β-cells and a review of the underlying molecular mechanisms. Diabetes. 2013;62(8):2674–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Murakami N, Riella LV, Funakoshi T. Risk of metabolic complications in kidney transplantation after conversion to mTOR inhibitor: a systematic review and meta-analysis. Am J Transplant. 2014;14(10):2317–27.

    Article  CAS  PubMed  Google Scholar 

  40. Sageshima J, Ciancio G, Chen L, et al. Everolimus with low-dose tacrolimus in simultaneous pancreas and kidney transplantation. Clin Transpl. 2014;7:797–801.

    Article  Google Scholar 

  41. Kaufman DB, Leventhal JR, Koffron AJ, et al. A prospective study of rapid corticosteroid elimination in simultaneous pancreas-kidney transplantation: comparison of two maintenance immunosuppression protocols: tacrolimus/mycophenolate mofetil versus tacrolimus/sirolimus. Transplantation. 2002;73:169–77.

    Article  CAS  PubMed  Google Scholar 

  42. Cantarovich D, Kervella D, Karam G, et al. Tacrolimus-versus sirolimus-based immunosuppression after simultaneous pancreas and kidney transplantation: 5-year results of a randomized trial. Am J Transplant. 2020;20(6):1679–90.

    Article  CAS  PubMed  Google Scholar 

  43. Knight RJ, Podder H, Kerman RH, et. Al. Comparing a corticosteroid and calcineurin-free immunosuppression protocol to a conventional sirolimus, cyclosporine and prednisone-based regimen for pancreas-kidney transplantation. Transplantation. 2010;89(6):727–32.

    Article  CAS  PubMed  Google Scholar 

  44. Knight RJ, Sadhu A, Devos J, Patel S, Moore L, Gaber AO. The metabolic effects of tacrolimus and sirolimus on insulin secretion and insulin resistance in pancreas-kidney transplant recipients. Transplantation. 2013;96S:85.

    Google Scholar 

  45. Stock PG, Mannon RB, Armstrong B, et al. Challenges of calcineurin inhibitor withdrawal following combined pancreas and kidney transplantation: results of a prospective, randomized clinical trial. Am J Transplant. 2020;20:1886–678.

    Article  Google Scholar 

  46. Werzowa J, Hecking M, Haidinger M, et al. Vildagliptin and pioglitazone in patients with impaired glucose tolerance after kidney transplantation: a randomized, placebo-controlled clinical trial. Transplantation. 2012;95:456–62.

    Article  Google Scholar 

  47. Villanueva G, Baldwin D. Rosiglitazone therapy of posttransplant diabetes mellitus. Transplantation. 2005;80:1402–5.

    Article  CAS  PubMed  Google Scholar 

  48. Lane JT, Odegaard DE, Haire CE, Collier DS, Wrenshall LE, Stevens RB. Sitagliptin therapy in kidney transplant recipients with new-onset diabetes after transplantation. Transplantation. 2011;92:e56–7.

    Article  PubMed  Google Scholar 

  49. Haidinger M, Werzowa J, Hecking M, et al. Efficacy and safety of vildagliptin in new-onset diabetes after kidney transplantation-a randomized, double-blind, placebo-controlled trial. Am J Transplant. 2014;14:115–23.

    Article  CAS  PubMed  Google Scholar 

  50. Sharif A. Should metformin be our antiglycemic agent of choice post-transplantation? Am J Transplant. 2011;11:1376–81.

    Article  CAS  PubMed  Google Scholar 

  51. Newsome PN, Buchholtz K, Cusi K, et al. A placebo-controlled trial of subcutaneous semaglutide in nonalcoholic steatohepatitis. NEJM. 2020;384(12):1113–24. https://doi.org/10.1056/NEJMoa2028395.

    Article  PubMed  Google Scholar 

  52. Wilding JPH, Batterham RL, Calanna S, et al. Once-weekly semaglutide in adults with overweight or obesity. NEJM. 2021;384(11):989–1002. https://doi.org/10.1056/NEJMoa2032183.

    Article  CAS  PubMed  Google Scholar 

  53. Thangavelu T, Lyden E, Shivaswamy V. A retrospective study of glucagon-like peptide 1 receptor agonists for the management of diabetes after transplantation. Diabetes Ther. 2020;11(4):987–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Voytovich MH, Haukereid C, Hjelmesaeth J, Hartmann A, Løvi A, Jenssen T. Nateglinide improves postprandial hyperglycemia and insulin secretion in renal transplant recipients. Clin Transpl. 2007;21:246–51.

    Article  Google Scholar 

  55. Türk T, Pietruck F, Dolff S, et al. Repaglinide in the management of new-onset diabetes mellitus after renal transplantation. Am J Transplant. 2006;6:842–6.

    Article  PubMed  Google Scholar 

  56. Gross CR, Limwattananon C, Matthees BJ. Quality of life after pancreas transplantation: a review. Clin Transpl. 1998;12:351–61.

    CAS  Google Scholar 

  57. Santo Sampaio M, Naini Reddy P, Kuo H, et al. Obesity was associated with inferior outcomes in simultaneous pancreas kidney transplant. Transplantation. 2010;89:117–1125.

    Google Scholar 

  58. Knight RJ, Islam AK, Pham C, et al. Weight gain after simultaneous kidney and pancreas transplantation. Transplantation. 2020;104(3):632–9.

    Article  PubMed  Google Scholar 

  59. Torabi J, Rocca JP, Kestenbaum E, et al. Preoperative c-peptide predicts weight gain after pancreas transplantation. Prog Transplant. 2020;30:117–24.

    Article  PubMed  Google Scholar 

  60. Stratta RJ, Rogers J, Farney AC, et al. Pancreas transplantation in c-peptide positive patients: does “type” of diabetes really matter? J Am Coll Surg. 2015;220:716–27.

    Article  PubMed  Google Scholar 

  61. Parajul S, Odorico J, Astor B, et al. Allograft pancreatectomy while on continued immunosuppression. Transplantation. 2017;101:2228–34.

    Article  Google Scholar 

  62. Gasteiger S, Cardini B, Göbel G, et al. Outcomes of pancreas retransplantation in patients with pancreas graft failure. BJS. 2018;105:1816–24.

    Article  CAS  Google Scholar 

  63. Parajuli S, Arunachalam A, Swanson KJ, et al. Pancreas retransplant after pancreas graft failure in simultaneous pancreas-kidney transplants is associated with better kidney graft survival. Transplant Direct. 2019;5:e473.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard J. Knight .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Knight, R.J., Sadhu, A.R., Gaber, A.O. (2023). Management of the Failing Pancreas Graft. In: Gruessner, R.W.G., Gruessner, A.C. (eds) Transplantation of the Pancreas. Springer, Cham. https://doi.org/10.1007/978-3-031-20999-4_69

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20999-4_69

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20998-7

  • Online ISBN: 978-3-031-20999-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics