Skip to main content
Log in

Renal Protection in Hypertensive Patients: Selection of Antihypertensive Therapy

  • Review Article
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

Hypertension is common in chronic renal disease and is a risk factor for the faster progression of renal damage, and reduction of blood pressure (BP) is an efficient way of preventing or slowing the progression of this damage. International guidelines recommend lowering BP to 140/90mm Hg or less in patients with uncomplicated hypertension, and to 130/80mm Hg or less for patients with diabetic or chronic renal disease. The attainment of these goals needs to be aggressively pursued with multidrug antihypertensive regimens, if needed. The pathogenesis of hypertensive renal damage involves mediators from various extracellular systems, including the renin—angiotensin system (RAS). Proteinuria, which occurs as a consequence of elevated intraglomerular pressure, is also directly nephrotoxic. As well as protecting the kidneys by reducing BP, antihypertensive drugs can also have direct effects on intrarenal mechanisms of damage, such as increased glomerular pressure and proteinuria. Antihypertensive drugs that have direct effects on intrarenal mechanisms may, therefore, have nephroprotective effects additional to those resulting from reductions in arterial BP. Whereas BP-lowering effects are common to all antihypertensive drugs, intrarenal effects differ between classes and between individual drugs within certain classes. Angiotensin-converting enzyme (ACE) inhibitors and angiotensin receptor blockers (ARB) have beneficial effects on proteinuria and declining renal function that appear to be mediated by factors additional to their effects on BP. These RAS inhibitors are recommended as a first-line antihypertensive approach in patients with chronic kidney disease. The addition of diuretics and calcium channel antagonists to RAS inhibitor therapy is also considered to be a rational strategy to reduce BP and preserve renal function. Calcium channel antagonists are a highly heterogeneous class of compounds, and it appears that some agents are more suitable for use in patients with chronic renal disease than others. Manidipine is a third-generation dihydropyridine (DHP) calcium channel antagonist that blocks both L and T-type calcium channels. Unlike older-generation DHPs, which preferentially act on L-type channels, manidipine has been shown to have beneficial effects on intrarenal haemodynamics, proteinuria and other measures of renal functional decline in the first clinical trials involving hypertensive patients with chronic renal failure. Preliminary results from a trial in diabetic patients who had uncontrolled hypertension and microalbuminuria despite optimal therapy with an ACE inhibitor or an ARB suggest that manidipine may be an excellent antihypertensive drug in combination with RAS inhibitor treatment in order to normalise BP and albumin excretion in patients with diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Table I
Table II
Table III

Similar content being viewed by others

References

  1. Atlas of End-stage Renal Disease in the United States. Excerpts from the United States Renal Data Systems 2002 annual report. Am J Kidney Dis 2003; 41 4 suppl. 2: v–ix, S7-254

    Google Scholar 

  2. Wenzel RR, Bruck H, Noll G, et al. Antihypertensive drugs and the sympathetic nervous system. J Cardiovasc Pharmacol 2000; 35 7 suppl. 4: S43–52

    Article  PubMed  CAS  Google Scholar 

  3. Perry HM Jr, Miller JP, Fornoff JR, et al. Early predictors of 15-year end-stage renal disease in hypertensive patients. Hypertension 1995; 25: 587–94

    Article  PubMed  Google Scholar 

  4. Klag MJ, Whelton PK, Randall BL, et al. Blood pressure and end-stage renal disease in men. N Engl J Med 1996; 334: 13–8

    Article  PubMed  CAS  Google Scholar 

  5. Young JH, Klag MJ, Muntner P, et al. Blood pressure and decline in kidney function: findings from the Systolic Hypertension in the Elderly Program (SHEP). J Am Soc Nephrol 2002; 13: 2776–82

    Article  PubMed  CAS  Google Scholar 

  6. National High Blood Pressure Education Program. Working group report on hypertension in diabetes. Hypertension 1994; 23: 145–58; discussion 159-60

    Article  Google Scholar 

  7. Hovind P, Rossing P, Tarnow L, et al. Progression of diabetic nephropathy. Kidney Int 2001; 59: 702–9

    Article  PubMed  CAS  Google Scholar 

  8. Mailloux LU. Hypertension in chronic renal failure and ESRD: prevalence, pathophysiology, and outcomes. Semin Nephrol 2001; 21: 146–56

    Article  PubMed  CAS  Google Scholar 

  9. Kidney Disease Outcomes Quality Initiative (K/DOQI). Clinical practice guidelines on hypertension and antihypertensive agents in chronic kidney disease. Am J Kidney Dis 2004; 43 5 suppl. 1: S1–290

    Google Scholar 

  10. Chobanian AV, Bakris GL, Black HR, et al. Seventh report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure. Hypertension 2003; 42: 1206–52

    Article  PubMed  CAS  Google Scholar 

  11. Salvetti A, Mattei P, Sudano I. Renal protection and antihypertensive drugs: current status. Drugs 1999; 57: 665–93

    Article  PubMed  CAS  Google Scholar 

  12. De Vecchi AF, Dratwa M, Wiedemann ME. Healthcare systems and end-stage renal disease (ESRD) therapies-an international review: costs and reimbursement/ funding of ESRD therapies. Nephrol Dial Transplant 1999; 14 suppl. 6: 31–41

    Article  PubMed  Google Scholar 

  13. Simeon G, Bakris GL. Socioeconomic impact of diabetic nephropathy: can we improve the outcome? J Hypertens Suppl 1997; 15: S77–82

    PubMed  CAS  Google Scholar 

  14. St Peter WL, Khan SS, Ebben JP, et al. Chronic kidney disease: the distribution of health care dollars. Kidney Int 2004; 66: 313–21

    Article  Google Scholar 

  15. Khan SS, Kazmi WH, Abichandani R, et al. Health care utilization among patients with chronic kidney disease. Kidney Int 2002; 62: 229–36

    Article  PubMed  Google Scholar 

  16. Stengel B, Billon S, Van Dijk PC, et al. Trends in the incidence of renal replacement therapy for end-stage renal disease in Europe, 1990–1999. Nephrol Dial Transplant 2003; 18: 1824–33

    Article  PubMed  Google Scholar 

  17. Ritz E, Rychlik I, Locatelli F, et al. End-stage renal failure in type 2 diabetes: a medical catastrophe of worldwide dimensions. Am J Kidney Dis 1999; 34: 795–808

    Article  PubMed  CAS  Google Scholar 

  18. Abbott K, Basta E, Bakris GL. Blood pressure control and nephroprotection in diabetes. J Clin Pharmacol 2004; 44: 431–8

    Article  PubMed  CAS  Google Scholar 

  19. Susic D, Frohlich ED. Nephroprotective effect of antihypertensive drugs in essential hypertension. J Hypertens 1998; 16: 555–67

    Article  PubMed  CAS  Google Scholar 

  20. Bidani AK, Griffin KA. Long-term renal consequences of hypertension for normal and diseased kidneys. Curr Opin Nephrol Hypertens 2002; 11: 73–80

    Article  PubMed  Google Scholar 

  21. Tolins JP, Shultz P, Raij L. Mechanisms of hypertensive glomerular injury. Am J Cardiol 1988; 62: 54G-8

    Article  Google Scholar 

  22. Bidani AK, Griffin KA. Pathophysiology of hypertensive renal damage: implications for therapy. Hypertension 2004; 44: 595–601

    Article  PubMed  CAS  Google Scholar 

  23. Susic D. Renal protective potential of antihypertensive drugs. Expert Opin Invest Drugs 2000; 9: 2593–600

    Article  CAS  Google Scholar 

  24. Joles JA, Koomans HA. Causes and consequences of increased sympathetic activity in renal disease. Hypertension 2004; 43: 699–706

    Article  PubMed  CAS  Google Scholar 

  25. Ligtenberg G, Blankestijn PJ, Oey PL, et al. Reduction of sympathetic hyperactivity by enalapril in patients with chronic renal failure. N Engl J Med 1999; 340: 1321–8

    Article  PubMed  CAS  Google Scholar 

  26. Wenzel RR, Spieker L, Qui S, et al. I1-imidazoline agonist moxonidine decreases sympathetic nerve activity and blood pressure in hypertensives. Hypertension 1998; 32: 1022–7

    Article  PubMed  CAS  Google Scholar 

  27. Klein IH, Ligtenberg G, Oey PL, et al. Sympathetic activity is increased in polycystic kidney disease and is associated with hypertension. J Am Soc Nephrol 2001; 12: 2427–33

    PubMed  CAS  Google Scholar 

  28. Grisk O, Rettig R. Interactions between the sympathetic nervous system and the kidneys in arterial hypertension. Cardiovasc Res 2004; 61: 238–46

    Article  PubMed  CAS  Google Scholar 

  29. Remuzzi G. Sympathetic overactivity in hypertensive patients with chronic renal disease. N Engl J Med 1999; 340: 1360–1

    Article  PubMed  CAS  Google Scholar 

  30. Al-Nimri MA, Komers R, Oyama TT, et al. Endothelial-derived vasoactive mediators in polycystic kidney disease. Kidney Int 2003; 63: 1776–84

    Article  PubMed  CAS  Google Scholar 

  31. Ritz E, Adamczak M, Zeier M. Kidney and hypertension-causes. Update 2003. Herz 2003; 28: 663–7

    Google Scholar 

  32. Rabelink TJ, Koomans HA. Endothelial function and the kidney. An emerging target for cardiovascular therapy. Drugs 1997; 53 suppl. 1: 11–9

    Article  PubMed  CAS  Google Scholar 

  33. de Zeeuw D, Remuzzi G, Parving HH, et al. Proteinuria, a target for renoprotection in patients with type 2 diabetic nephropathy: lessons from RENAAL. Kidney Int 2004; 65: 2309–20

    Article  PubMed  Google Scholar 

  34. Abbate M, Zoja C, Corna D, et al. In progressive nephropathies, overload of tubular cells with filtered proteins translates glomerular permeability dysfunction into cellular signals of interstitial inflammation. J Am Soc Nephrol 1998; 9: 1213–24

    PubMed  CAS  Google Scholar 

  35. Peterson JC, Adler S, Burkart JM, et al. Blood pressure control, proteinuria, and the progression of renal disease. The Modification of Diet in Renal Disease Study. Ann Intern Med 1995; 123: 754–62

    CAS  Google Scholar 

  36. Ruggenenti P, Schieppati A, Remuzzi G. Progression, remission, regression of chronic renal diseases. Lancet 2001; 357: 1601–8

    Article  PubMed  CAS  Google Scholar 

  37. The GISEN Group (Gruppo Italiano di Studi Epidemiologici in Nefrologia). Randomised placebo-controlled trial of effect of ramipril on decline in glomerular filtration rate and risk of terminal renal failure in proteinuric, non-diabetic nephropathy. Lancet 1997; 349: 1857–63

    Article  Google Scholar 

  38. Keane WF, Eknoyan G. Proteinuria, albuminuria, risk, assessment, detection, elimination (PARADE): a position paper of the National Kidney Foundation. Am J Kidney Dis 1999; 33: 1004–10

    Article  PubMed  CAS  Google Scholar 

  39. Arauz-Pacheco C, Parrott MA, Raskin P. Treatment of hypertension in adults with diabetes. Diabetes Care 2003; 26 suppl. 1: S80–2

    Article  PubMed  Google Scholar 

  40. Guidelines Committee, 2003 European Society of Hypertension. European Society of Cardiology guidelines for the management of arterial hypertension. J Hypertens 2003; 21: 1011–53

    Article  Google Scholar 

  41. Bakris GL. Maximizing cardiorenal benefit in the management of hypertension: achieve blood pressure goals. J Clin Hypertens (Greenwich) 1999; 1: 141–7

    Google Scholar 

  42. Bakris GL, Williams M, Dworkin L, et al. Preserving renal function in adults with hypertension and diabetes: a consensus approach. National Kidney Foundation Hypertension and Diabetes Executive Committees Working Group. Am J Kidney Dis 2000; 36: 646–61

    CAS  Google Scholar 

  43. Parving HH, Lehnert H, Brochner-Mortensen J, et al. The effect of irbesartan on the development of diabetic nephropathy in patients with type 2 diabetes. N Engl J Med 2001; 345: 870–8

    Article  PubMed  CAS  Google Scholar 

  44. Parving HH, Hovind P. Microalbuminuria in type 1 and type 2 diabetes mellitus: evidence with angiotensin converting enzyme inhibitors and angiotensin II receptor blockers for treating early and preventing clinical nephropathy. Curr Hypertens Rep 2002; 4: 387–93

    Article  PubMed  Google Scholar 

  45. Chan JC, Ko GT, Leung DH, et al. Long-term effects of angiotensin-converting enzyme inhibition and metabolic control in hypertensive type 2 diabetic patients. Kidney Int 2000; 57: 590–600

    Article  PubMed  CAS  Google Scholar 

  46. Heart Outcomes Prevention Evaluation Study Investigators. Effects of ramipril on cardiovascular and microvascular outcomes in people with diabetes mellitus: results of the HOPE study and MICRO-HOPE substudy. Lancet 2000; 355: 253–9

    Article  Google Scholar 

  47. Lewis EJ, Hunsicker LG, Clarke WR, et al. Renoprotective effect of the angiotensin-receptor antagonist irbesartan in patients with nephropathy due to type 2 diabetes. N Engl J Med 2001; 345: 851–60

    Article  PubMed  CAS  Google Scholar 

  48. Brenner BM, Cooper ME, de Zeeuw D, et al. Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N Engl J Med 2001; 345: 861–9

    Article  PubMed  CAS  Google Scholar 

  49. Wright JT Jr, Bakris G, Greene T, et al. Effect of blood pressure lowering and antihypertensive drug class on progression of hypertensive kidney disease: results from the AASK trial. JAMA 2002; 288: 2421–31

    Article  PubMed  CAS  Google Scholar 

  50. Marre M, Puig JG, Kokot F, et al. Equivalence of indapamide SR and enalapril on microalbuminuria reduction in hypertensive patients with type 2 diabetes: the NESTOR Study. J Hypertens 2004; 22: 1613–22

    Article  PubMed  CAS  Google Scholar 

  51. Puddu P, Puddu GM, Cravero E, et al. Different effects of antihypertensive drugs on endothelial dysfunction. Acta Cardiol 2004; 59: 555–64

    Article  PubMed  Google Scholar 

  52. Tarif N, Bakris GL. Preservation of renal function: the spectrum of effects by calcium-channel blockers. Nephrol Dial Transplant 1997; 12: 2244–50

    Article  PubMed  CAS  Google Scholar 

  53. Koshy S, Bakris GL. Therapeutic approaches to achieve desired blood pressure goals: focus on calcium channel blockers. Cardiovasc Drugs Ther 2000; 14: 295–301

    Article  PubMed  CAS  Google Scholar 

  54. Smith AC, Toto R, Bakris GL. Differential effects of calcium channel blockers on size selectivity of proteinuria in diabetic glomerulopathy. Kidney Int 1998; 54: 889–96

    Article  PubMed  CAS  Google Scholar 

  55. Bakris GL, Copley JB, Vicknair N, et al. Calcium channel blockers versus other antihypertensive therapies on progression of NIDDM associated nephropathy. Kidney Int 1996; 50: 1641–50

    Article  PubMed  CAS  Google Scholar 

  56. Bakris GL, Weir MR, DeQuattro V, et al. Effects of an ACE inhibitor/calcium antagonist combination on proteinuria in diabetic nephropathy. Kidney Int 1998; 54: 1283–9

    Article  PubMed  CAS  Google Scholar 

  57. Ruggenenti P, Fassi A, Ilieva AP, et al. Preventing microalbuminuria in type 2 diabetes. N Engl J Med 2004; 351: 1941–51

    Article  PubMed  CAS  Google Scholar 

  58. Agodoa LY, Appel L, Bakris GL, et al. Effect of ramipril vs amlodipine on renal outcomes in hypertensive nephrosclerosis: a randomized controlled trial. JAMA 2001; 285: 2719–28

    Article  PubMed  CAS  Google Scholar 

  59. Jerums G, Allen TJ, Campbell DJ, et al. Long-term comparison between perindopril and nifedipine in normotensive patients with type 1 diabetes and microalbuminuria. Am J Kidney Dis 2001; 37: 890–9

    Article  PubMed  CAS  Google Scholar 

  60. Parving HH, Andersen AR, Smidt UM, et al. Reduced albuminuria during early and aggressive antihypertensive treatment of insulin-dependent diabetic patients with diabetic nephropathy. Diabetes Care 1981; 4: 459–63

    Article  PubMed  CAS  Google Scholar 

  61. Parving HH, Andersen AR, Smidt UM, et al. Early aggressive antihypertensive treatment reduces rate of decline in kidney function in diabetic nephropathy. Lancet 1983; 1: 1175–9

    Article  PubMed  CAS  Google Scholar 

  62. Iimura O, Shimamoto K. Efficacy and mode of action of manidipine: a new calcium antagonist. Am Heart J 1993; 125: 635–41

    Article  PubMed  CAS  Google Scholar 

  63. Fogari R, Zoppi A, Corradi L, et al. Effects of different dihydropyridine calcium antagonists on plasma norepinephrine in essential hypertension. J Hypertens 2000; 18: 1871–5

    Article  PubMed  CAS  Google Scholar 

  64. McKeage K, Scott LJ. Manidipine: a review of its use in the management of hypertension. Drugs 2004; 64: 1923–40

    Article  PubMed  CAS  Google Scholar 

  65. Hayashi K, Ozawa Y, Fujiwara K, et al. Role of actions of calcium antagonists on efferent arterioles—with special references to glomerular hypertension. Am J Nephrol 2003; 23: 229–44

    Article  PubMed  CAS  Google Scholar 

  66. Watanabe H. Block of T-type calcium channel by dihydropyridine calcium antagonists [in Japanese]. Teiko Med J 2003; 26: 524–33

    Google Scholar 

  67. Hansen PB, Jensen BL, Andreasen D, et al. Vascular smooth muscle cells express the alpha1A subunit of a P-/Q-type voltage-dependent Ca2+ channel, and it is functionally important in renal afferent arterioles. Circ Res 2000; 87: 896–902

    Article  PubMed  CAS  Google Scholar 

  68. Fink K, Meder WP, Clusmann H, et al. Ca2+ entry via P/Q-type Ca2+ channels and the Na+/Ca2+ exchanger in rat and human neocortical synaptosomes. Naunyn Schmiedebergs Arch Pharmacol 2002; 366: 458–63

    Article  PubMed  CAS  Google Scholar 

  69. Griffin KA, Bidani AK. Calcium-channel blockers and the progression of renal disease. Curr Hypertens Rep 1999; 1: 436–45

    Article  PubMed  CAS  Google Scholar 

  70. Arima S, Ito S, Omata K, et al. Diverse effects of calcium antagonists on glomerular hemodynamics. Kidney Int 1996; 55 suppl.: S132–4

    CAS  Google Scholar 

  71. Takabatake T, Ohta H, Sasaki T, et al. Renal effects of manidipine hydrochloride. A new calcium antagonist in hypertensive patients. Eur J Clin Pharmacol 1993; 45: 321–5

    CAS  Google Scholar 

  72. Del Vecchio L, Pozzi M, Salvetti A, et al. Efficacy and tolerability of manidipine in the treatment of hypertension in patients with non-diabetic chronic kidney disease without glomerular disease. Prospective, randomized, double-blind study of parallel groups in comparison with enalapril. J Nephrol 2004; 17: 261–9

    Google Scholar 

  73. Bellinghieri G, Mazzaglia G, Savica V, et al. Effects of manidipine and nifedipine on blood pressure and renal function in patients with chronic renal failure: a multicenter randomized controlled trial. Ren Fail 2003; 25: 681–9

    Article  PubMed  CAS  Google Scholar 

  74. Fogari R, Mugellini A, Zoppi A, et al. Effect of manidipine and lisinopril on albuminuria and ventricular mass in diabetic hypertensive patients with microalbuminuria [Abstract no. P0209]. J Hypertens 2002; 20 suppl. 4: 56

    Google Scholar 

  75. Martinez-Martin F, Saiz-Satjes M. Addition of manidipine in type 2 diabetic patients with uncontrolled hypertension and microalbuminuria: The AMANDHA Trial [Abstract]. J Hypertens 2004; 22 suppl. 2: 245

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to René R. Wenzel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wenzel, R.R. Renal Protection in Hypertensive Patients: Selection of Antihypertensive Therapy. Drugs 65 (Suppl 2), 29–39 (2005). https://doi.org/10.2165/00003495-200565002-00005

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003495-200565002-00005

Keywords

Navigation