Skip to main content

Advertisement

Log in

The Role of Systemic Blood Pressure in the Progression of Chronic Kidney Disease

  • Hypertension (R Townsend, Section Editor)
  • Published:
Current Cardiovascular Risk Reports Aims and scope Submit manuscript

Abstract

Chronic kidney disease (CKD) regardless of etiology tends to progress. Substantial evidence indicates that even modest coexistent hypertension (HTN) plays a major role in such progression due to an increased transmission of systemic HTN to the renal microvasculature in CKD states. This is due to preglomerular vasodilation and an impairment of the renal autoregulatory responses that normally protect against such transmission. Accordingly, effective BP control that also includes renin-angiotensin system (RAS) blockade is recommended as a primary management strategy for slowing CKD progression. It is widely believed that RAS blockade provides additional renoprotection beyond BP lowering. While the BP-independence of such renoprotective effects remains a matter of some controversy, there is nevertheless other compelling rationale for the use of RAS blockade in CKD patients. Hypertension in CKD states is usually volume dependent and requires effective diuretic therapy for adequate and sustained BP control. Not only is RAS blockade a very effective antihypertensive regimen in adequately diuresed patients, it counteracts the negative effects of diuretics on potassium and magnesium balance. Although definitive clinical trial evidence in favor of lower BP goals in proteinuric CKD is not yet available, some guidelines also recommend a lower systolic BP target of <130 mmHg for proteinuric CKD vs. <140 mmHg that is recommended for most individuals including those with non-proteinuric CKD. Finally, given that ambulatory blood pressure monitoring (ABPM) has shown that masked and nocturnal HTN may be both more frequent and more difficult to control in CKD patients, it may be as important to focus on achieving 24-h BP control as on the clinic BP targets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. U.S. Renal Data system (USRDS 2012 Annual Data Report. Atlas of chronic kidney disease and end-stage renal disease in the United States. Bethesda: National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases; 2012.

    Google Scholar 

  2. Klag MJ, Whelton PK, Randall BL, Neaton JD, Brancati FL, Stamler J. End-stage renal disease in African-American and white men: 16-year MRFIT findings. JAMA. 1997;277:1293–8.

    Article  CAS  PubMed  Google Scholar 

  3. Hsu CY, McCulloch CE, Darbinian J, Go AS, Iribarron C. Elevated blood pressure and risk of end-stage renal disease in subjects without baseline kidney disease. Arch Intern Med. 2005;165:923–8.

    Article  PubMed  Google Scholar 

  4. Kao WH, Klag MJ, Meoni LA, et al. Family Investigation of Nephropathy and Diabetes Research Group: MYH9 is associated with nondiabetic end-stage renal disease in African-Americans. Nat Genet. 2008;40:1185–92.

    Article  CAS  PubMed  Google Scholar 

  5. Genovese G, Friedman DJ, Ross MD, et al. Association of trypanolytic apoL1 variants with kidney disease in African-Americans. Science. 2010;329:841–5. Provides fairly definitive evidence of a genetic basis for the increased susceptibility to progressive kidney disease and ESRD in the African-American population.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Freedman BI, Sedor JR. Hypertenison-associated kidney disease: perhaps no more. J Am Soc Nephrol. 2008;19:2047–51.

    Article  PubMed  Google Scholar 

  7. Kopp JB. Rethinking hypertensive kidney disease: arterionephrosclerosis as a genetic, metabolic, and inflammatory disorder. Curr Opin Nephrol Hypertens. 2013;22:266–72.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Bidani AK, Griffin KA. Pathophysiology of hypertensive renal damage: implications for therapy. Hypertens. 2004;44:1–7.

    Article  Google Scholar 

  9. Olson JL. Renal disease caused by hypertension. In: Jennette JC, Olson JL, Schwartz MM, Silva FG, editors. Heptinstall’s pathology of the kidney. Sixth. II. Philadelphia: Lippincott Williams & Wilkins; 2006. p. 937–90.

    Google Scholar 

  10. Hill GS. Hypertensive nephrosclerosis. Curr Opin Npehrol Hypertens. 2008;17:266–70.

    Article  Google Scholar 

  11. Bidani AK, Griffin KA, Williamson G, Wang X, Loutzenhiser R. Protective importance of the myogenic response in the renal circulation. Hypertens. 2009;54:393–8.

    Article  CAS  Google Scholar 

  12. Bidani AK, Polichnowski AJ, Loutzenhiser R, Griffin KA. Renal microvascular dysfunction, hypertension and CKD progression. Curr Opin Nephrol Hypertens. 2013;22:1–9. An overview of the hemodynamic changes that occur in chronic kidney disease and result in an enhanced vulnerability to hypertensive kidney injury.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Parving H-H, Smidt UM, Andersen AR, Svendsen PAA. Early aggressive antihypertensive treatment reduces rate of decline in kidney function in diabetic nephropathy. Lancet. 1983;1:1125–9.

    Google Scholar 

  14. Morgensen CE. Microalbuminuria, blood pressure and diabetic renal disease: origin and development of ideas. In: Mogensen CE, editor. The kidney and hypertension in diabetes mellitus. 6th ed. London: Taylor & Francis; 2004. p. 883–938.

    Google Scholar 

  15. Jafar TH, Stark PC, Schmid CH, Landa M, Maschio G, de Jong PE, et al. Progression of chronic kidney disease: the role of blood pressure control, proteinuria, and angiotensin-converting enzyme inhibition. A patient-level meta-analysis. Ann Intern Med. 2003;139:244–52.

    Article  CAS  PubMed  Google Scholar 

  16. Bakris GL, Williams M, Dworkin Elliott WJ, Epstein M, Toto R, Tuttle K, et al. Preserving renal function in the adults with hypertension and diabetes: a consensus approach. Am J Kidney Dis. 2000;36:646–61.

    Article  CAS  PubMed  Google Scholar 

  17. Joint National Committee on Prevention, Detection, Evaluation and Treatment of High Blood Pressure. The seventh report of the Joint National Committee on Prevention, Detection, Evaluation and Treatment of High Blood Pressure. JAMA. 2003;289:2560–72.

    Article  Google Scholar 

  18. Kidney Disease Outcome Quality Initiative (KDOQI). KDOQI clinical practice guidelines on hypertension and antihypertensive agents in chronic kidney disease. Am J Kidney Diseases. 2004;43:S1–290.

    Google Scholar 

  19. Appel LI, Wright JTJR, Green T, AASK Collaborative Research Group, et al. Intensive blood pressure control in hypertensive chronic kidney disease. N Engl J Med. 2010;363:918–29.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Bidani AK, Griffin KA, Epstein M. Hypertension and chronic kidney disease progression: Why the suboptimal outcomes? Am J Med. 2012;125:1057–62. Discusses the potentially large importance of 24-h BP control in the prevention of hypertensive kidney damage.

    Article  PubMed Central  PubMed  Google Scholar 

  21. Bidani AK, Griffin KA. Blood pressure targets in chronic kidney disease. Nat Rev Nephrol. 2011;7(3):128–30.

    Article  PubMed Central  PubMed  Google Scholar 

  22. Arendshorst WJ. Autoregulation of renal blood flow in spontaneously hypertensive rats. Circ Res. 1979;44:344–9.

    Article  CAS  PubMed  Google Scholar 

  23. Loutzenhiser, Griffin KA, Williamson G, Bidani AK. Renal autoregulation: new perspectives regarding the protective and regulatory roles of the underlying mechanisms. Am J Physiol. 2006;290:R1153–67.

    CAS  Google Scholar 

  24. Griffin KA, Abu-Amarah I, Picken M, Bidani AK. Renoprotection by ACE inhibition or aldosterone blockade is blood pressure dependent. Hypertens. 2003;41:201–6.

    Article  CAS  Google Scholar 

  25. Griffin KA, Polichnowski A, Litbarg N, Picken M, Venkatachalam MA, Bidani AK. Critical blood pressure threshold dependence of hypertensive injury and repair in a malignant nephrosclerosis model. Hypertens. 2014;64(4):801–7. Provides strong evidence of the importance of BP reductions per se rather than antihypertensive class in promoting recovery from acute hypertensive injury.

    Article  CAS  Google Scholar 

  26. Mamdani BH, Lim VS, Mahurkar SD, Katz AI, Dunea G. Recovery from prolonged renal failure in patients with accelerated hypertension. N Engl J Med. 1974;291:1343–4.

    Article  CAS  PubMed  Google Scholar 

  27. Palmer BF. Renal dysfunction complicating the treatment of hypertension. N Engl J Med. 2002;347:1256–61.

    Article  PubMed  Google Scholar 

  28. Hostetter TH, Olson JL, Rennke HG, et al. Hyperfiltration in remnant nephrons: a potentially adverse response to renal ablation. Am J Physiol. 1981;241:F85–93.

    CAS  PubMed  Google Scholar 

  29. Brenner BM, Lawler EV, Mackenzie HS. The hyperfiltration theory: a paradigm shift in nephrology. Kidney Int. 1996;49:1774–7.

    Article  CAS  PubMed  Google Scholar 

  30. Griffin KA, Kramer H, Bidani AK. Adverse renal consequences of obesity. Am J Physiol. 2008;94:F685–96.

    Google Scholar 

  31. Bidani AK, Schwartz MM, Lewis EJ. Renal autoregulation and vulnerability to hypertensive injury in remnant kidney. Am J Physiol. 1987;252:1003–10.

    Google Scholar 

  32. Bidani AK, Hacioglu R, Abu-Amarah I, Williamson GA, Loutzenhiser R, Griffin KA. ‘Step’ vs ‘dynamic’ autoregulation: implications for susceptibility to hypertensive injury. Am J Physiol. 2003;285:F113–20.

    CAS  Google Scholar 

  33. Griffin KA, Picken MM, Bidani AK. Deleterious effects of calcium channel blockade on pressure transmission and glomerular injury in rat remnant kidneys. J Clin Invest. 1995;96:793–800.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Griffin KA, Picken M, Giobbie-Hurder A, Bidani AK. Low protein diet mediated renoprotection in remnant kidneys: renal autoregulatory vs hypertrophic mechanisms. Kidney Int. 2003;63:607–16.

    Article  PubMed  Google Scholar 

  35. Griffin KA, Picken MM, Bidani AK. Blood pressure lability and glomerulosclerosis after normotensive 5/6 renal mass reduction in the rat. Kidney Int. 2004;65:209–18.

    Article  PubMed  Google Scholar 

  36. Pavenstadt H, Kriz W, Knetzler M. Cell biology of the glomerular podocyte. Physiol Rev. 2003;83:253–307.

    Article  CAS  PubMed  Google Scholar 

  37. Kriz W, Elger M, Mundel P, Lemley KV. Structure-stabilizing forces in the glomerular tuft. J Am Soc Nephrol. 1995;51:1731–9.

    Google Scholar 

  38. Wiggins JE, Goyal M, Sanders SK, Wharram BL, Shedden KA, Misek DE, et al. Podocyte hypertrophy, “adaptation”, and “decompensation” associated with glomerular enlargement and glomerulosclerosis in the aging rat: prevention by calorie restriction. J Am Soc Nephrol. 2005;16:2953–66.

    Article  PubMed  Google Scholar 

  39. Bidani AK, Mitchell KD, Schwartz MM, Navar LG, Lewis EJ. Absence of progressive glomerular injury in a normotensive rat remnant kidney model. Kidney Int. 1990;38:28–38.

    Article  CAS  PubMed  Google Scholar 

  40. Baylis C. Nitric oxide synthase derangements and hypertension in kidney disease. Curr Opin Nephrol Hypertens. 2012;21:1–6. Reviews the major role of nitric oxide in the pathogenesis of hypertension and kidney injury in chronic kidney disease states.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Griffin K, Polichnowski A, Licea-Vargas H, Picken M, Long J, Williamson G, et al. Large BP-dependent and -independent differences in susceptibility to nephropathy after nitric oxide inhibition in Sprague–Dawley rats from two major suppliers. Am J Physiol Renal Physiol. 2012;302:F173–82. Discusses evidence that suggests a novel protective mechanism of NO in glomerular hypertension states, mediated through its local efferent arteriolar vasodilatory effects.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Bachmann S, Bosse HM, Mundel P. Topography of nitric oxide synthesis by localizing constitutive NO synthesis in mammalian kidney. Am J Physiol. 1995;268:F885–98.

    CAS  PubMed  Google Scholar 

  43. Elger M, Sakai T, Kriz W. The vascular pole of the renal glomerulus of the rat. Adv Aanat Embryol Cell Biol. 1998;139:1–98.

    Article  CAS  Google Scholar 

  44. Cupples WA, Braam B. Assessment of renal autoregulation. Am J Physiol. 2007;292:F1105–23.

    CAS  Google Scholar 

  45. Just A. Mechanisms of renal blood flow autoregulation: dynamics and contributions. Am J Physiol. 2007;292:R1–17.

    CAS  Google Scholar 

  46. He J, Whelton PK. Elevated systolic blood pressure and risk of cardiovascular and renal disease: overview of evidence from observational epidemiologic studies and randomized controlled trials. Am Heart J. 1999;138:211–9.

    Article  CAS  PubMed  Google Scholar 

  47. Davis MJ, Hill MA. Signaling mechanisms underlying the vascular myogenic response. Physiol Rev. 1999;79:387–423.

    CAS  PubMed  Google Scholar 

  48. Griffin KA, Bidani AK. Hypertensive renal damage: insights from animal models and clinical relevance. Curr Hypertens Rep. 2004;6(2):145–53.

    Article  PubMed  Google Scholar 

  49. Christensen PK, Hansen HP. Impaired autoregulation of GFR in hypertensive non-insulin dependent diabetic patients. Kidney Int. 1997;52:1369–74.

    Article  CAS  PubMed  Google Scholar 

  50. Christensen PK, Hommel EE. Impaired autoregulation of the glomerular filtration rate in patients with nondiabetic nephropathy. Kidney Int. 1999;56:1517–23.

    Article  CAS  PubMed  Google Scholar 

  51. Upadhyay A, Earley A, Haynes SM, Uhlig K. Systemic review: blood pressure target in chronic kidney disease and proteinuria as an effect modifier. Ann Int Med. 2011;154:541–8. A meta-analysis which suggests that proteinuric patients who are at greater risk of CKD progression may benefit from lower BP targets.

    Article  PubMed  Google Scholar 

  52. Wright Jr JT, Bakris G, Greene T, Agodoa LY, Appel LJ, Charleston J, et al. Effect of blood pressure and antihypertensive drug class on progression of hypertensive kidney disease. Results from the AASK trial. JAMA. 2002;288:2421–31.

    Article  CAS  PubMed  Google Scholar 

  53. Ruggenenti P, Perna A, Loriga G, Ganeva M, Ene-lordache B, Turburro M, et al. Blood pressure control for renoprotection in patients with non-diabetic chronic renal disease (REIN-2): multicentre, randomized controlled trial. Lancet. 2005;365:939–46.

    Article  PubMed  Google Scholar 

  54. Agarwal R. Ambulatory blood pressure and cardiovascular events in chronic kidney disease. Semin Nephrol. 2007;27:538–43.

    Article  PubMed Central  PubMed  Google Scholar 

  55. Pogue V, Rahman M, Lipkowitz M, African American Study of Kidney Disease, et al. Disparate estimates of hypertension control from ambulatory and clinic blood pressure measurements in hypertensive kidney disease. Hypertens. 2009;53:20–7. Demonstrates the inadequacy of clinic BP measurements alone to provide an assessment of 24-h BP control in hypertensive patients with CKD.

    Article  CAS  Google Scholar 

  56. Hermida RC, Ayala DE, Mojon A, Fernandez JR. Bedtime dosing of anti-hypertensive medications reduces cardiovascular risk in CKD. J Am Soc Nephrol. 2011;22:2313–21.

    Article  PubMed Central  PubMed  Google Scholar 

  57. Rothwell PM, Howard SC, Dolan E, et al. Prognostic significance of visit- to- visit variability, maximum systolic blood pressure, and episodic hypertension. Lancet. 2010;375:895–905.

    Article  PubMed  Google Scholar 

  58. Rothwell PM. Limitations of the usual blood pressure hypothesis and importance of variability, instability, and episodic hypertension. Lancet. 2010;375:938–48.

    Article  PubMed  Google Scholar 

  59. The ALLHAT. Offices and Coordinators for the ALLHAT Collaborative Research Group: major outcomes in high-risk hypertensive patients randomized to angiotensin-converting enzyme inhibitor or calcium channel blocker vs. diuretic; the antihypertensive and lipid lowering treatment to prevent heart attack trial. JAMA. 2002;288:2981–97.

    Article  Google Scholar 

  60. Blood Pressure Lowering Treatment Trialists’ Collaboration. Effects of different blood pressure lowering regimens on major cardiovascular events. Results of prospectively-designed overviews of randomized trials. Lancet. 2003;362:1527–35.

    Article  Google Scholar 

  61. Blood Pressure Lowering Treatment Trialists’ Collaboration. Effects of different blood pressure lowering regimens on major cardiovascular events in individuals with and without diabetes mellitus: results of prospectively designed overviews of randomized trials. Arch Intern Med. 2005;165:1410–9.

    Article  Google Scholar 

  62. Bidani AK, Griffin KA. The benefits of renin-angiotensin blockade in hypertension are dependent on blood-pressure lowering. Nat Clin Prac Nephrol (viewpoint). 2006;2:542–3.

    Article  Google Scholar 

  63. Griffin KA, Bidani AK. Progression of renal disease: the renoprotective specificity of renin angiotensin system blockade. Clin J Am Soc Nephrol. 2006;1:1054–65.

    Article  PubMed  Google Scholar 

  64. Blood Pressure Lowering Treatment Trialists’ Collaboration. Blood pressure lowering and major cardiovascular events in people with and without chronic kidney disease: meta-analysis of randomized controlled trials. BMJ. 2013;347:F5680.

    Article  PubMed Central  Google Scholar 

  65. Kurtz TW. False claims of blood pressure independent protection by blockade of the renin angiotensin aldosterone system? Hypertens. 2003;41:193–6.

    Article  CAS  Google Scholar 

  66. Harris RC, Nelson EG. Toward a unified theory of renal progression. Annu Rev Med. 2006;57:365–80.

    Article  CAS  PubMed  Google Scholar 

  67. Griffin KA, Picken M, Bidani AK. Radiotelemetric BP monitoring, antihypertensives and glomeruloprotection in remnant kidney model. Kidney Int. 1994;46:1010–8.

    Article  CAS  PubMed  Google Scholar 

  68. Bidani AK, Picken MM, Bakris G, Griffin KA. Lack of evidence of BP independent protection by renin-angiotensin system blockade after renal ablation. Kidney Int. 2000;57:1651–61.

    Article  CAS  PubMed  Google Scholar 

  69. Lewis EJ, Hunsicker LG, Bain RP, Rohde RD, Collaborative Study Group. The effects of angiotensin converting enzyme inhibition on diabetic nephropathy. N Engl J Med. 1993;329:1456–62.

    Article  CAS  PubMed  Google Scholar 

  70. Hebert LA, Bain RP, Verme D, Cattran D, White FC, Tolchin N, et al. Remission of nephrotic range proteinuria in type I diabetes. Kidney Int. 1994;46:1688–93.

    Article  CAS  PubMed  Google Scholar 

  71. Maschio G, Alberti D, Janin G, Locatelli F, Mann JFE, Motolese M, et al. The Angiotensin-Converting-Enzyme Inhibition in Progressive Renal Insufficiency Study Group: effects of the angiotensin-converting-enzyme inhibition benazepril on the progression of chronic renal insufficiency. N Engl J Med. 1996;334:939–45.

    Article  CAS  PubMed  Google Scholar 

  72. Gruppo Italiano di Studi Epidemiologici in Nefrologia (GISEN). Randomized placebo-controlled trials of effect of ramipril on decline in glomerular filtration rate and risks of terminal renal failure in proteinuric, non-diabetic nephropathy. Lancet. 1997;349:1857–63.

    Article  Google Scholar 

  73. Lewis EJ, Hunsicker LG, Clarke WR, Berl T, Pohl MA, Lewis JB, et al. Renoprotective effect of the angiotensin receptor antagonist irbesartan in patients with nephropathy due to type 2 diabetes. N Engl J Med. 2001;345:851–60.

    Article  CAS  PubMed  Google Scholar 

  74. Brenner BM, Cooper ME, de Zeeuw D, Keane WF, Mitch WE, Parving HH, et al. Effect of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N Engl J Med. 2001;345:861–9.

    Article  CAS  PubMed  Google Scholar 

  75. Hou FF, Zhang X, Zhang GH, Xie D, Chen PY, Zhang WR, et al. Efficacy and safety of benazepril for advanced chronic renal insufficiency. N Engl J Med. 2006;354:131–40.

    Article  CAS  PubMed  Google Scholar 

  76. Parving H-H, Osterby R, Anderson PW, Hsueh WA. In: Brenner BM, editor. Diabetic nephropathy. 5th ed. Philadelphia: The kidney; 1996. p. 1864–92.

    Google Scholar 

  77. Svensson P, de Faire U, Sleight P, Salim Yusuf S, Ostergren J. Comparison of the effects of ramipril on ambulatory and office blood pressures. A HOPE substudy. Hypertens. 2001;38:E28–32.

    Article  CAS  Google Scholar 

  78. Nakao N, Yoshimura A, Morita H, Takada M, Kayano T, Ideura T. Combination treatment of angiotensin-II receptor blocker and angiotensin-converting-enzyme inhibitor in non-diabetic renal disease (COOPERATE): a randomized controlled trial. Lancet. 2003;361:117–24.

    Article  CAS  PubMed  Google Scholar 

  79. Retraction—combination treatment of angiotensin-II receptor blocker and angiotensin-converting-enzyme inhibitor in non-diabetic renal disease (COOPERATE): a randomized controlled trial. Lancet 2009;374:1226.

  80. Bidani AK. Controversy about COOPERATE ABPM Trial Data. (letter to the Editor). Am J Nephrol. 2006;26:629–32.

    Article  PubMed  Google Scholar 

  81. Kunz R, Wobers M, Glass T, Mann JF. The COOPERATE trial: a letter of concern. Lancet. 2008;371:1575–6.

    Article  PubMed  Google Scholar 

  82. Investigators ONTARGET. Telmisartan, ramipril, or both in patients at high risk for vascular events. New Engl J Med. 2008;358:1547–59.

    Article  Google Scholar 

  83. Mann JF, Schmieder RE, McQueen M, Dyal L, Schumacher H, Pogue J, et al. ONTARGET investigators. Renal outcomes with telmisartan, ramipril, or both, in people at high vascular risk (the ONTARGET study): a multicentre, randomised, double-blind, controlled trial. Lancet. 2008;372:547–53.

    Article  CAS  PubMed  Google Scholar 

  84. Parving HH, Brenner BM, McMurray JJ, de Zeeuw D, Haffner SM, Solomon SD, et al. ALTITUDE Investigators: cardiorenal end points in a trial of aliskiren for type 2 diabetes. N Engl J Med. 2012;367:2204–13.

    Article  CAS  PubMed  Google Scholar 

  85. Fried LF, Emanuele N, Zhang JH, Brophy M, Conner TA, Duckworth W, et al. VA NEPHRON-D Investigators: combined angiotensin inhibition for the treatment of diabetic nephropathy. New Engl J Med. 2013;369:1892–903. The latest in a series of clinical trials to demonstrate that more complete RAS blockade (dual therapy) not only does not confer additional benefits but may in fact result in significant adverse effects.

    Article  CAS  PubMed  Google Scholar 

  86. Juurlink DN, Mamdani MM, Lee DS, Kopp A, Austin PC, Laupacis A, et al. Rates of hyperkalemia after publication of the randomized aldactone evaluation study. N Engl J Med. 2004;351:543–51.

    Article  CAS  PubMed  Google Scholar 

  87. de Zeeuw D, Parekh R, Soman S. CKD treatment: time to alter the focus to albuminuria? Adv Chronic Kidney Dis. 2011;18:222–3.

    Article  PubMed  Google Scholar 

  88. James PA, Oparil S, Carter BL, Cushman WC, Dennison-Himmelfarb C, Handler J, et al. 2014 evidence-based guideline for the management of high blood pressure in adults: report from the panel members appointed to the Eighth Joint National Committee (JNC 8). JAMA. 2014;311:507–20. The most recent recommendations for BP management from the panel members appointed to Eighth Joint National Committee (JNC8).

    Article  CAS  PubMed  Google Scholar 

  89. Wright Jr JT, Fine LJ, Lackland DT, Ogedegbe G, Dennison Himmelfarb CR. Evidence supporting a systolic blood pressure goal of less than 150 mmHg in patients aged 60 years or older: the minority view. Ann Intern Med. 2014;160:499–503.

  90. Klahr S, Levey AS, Beck GJ, Caggiula AW, Hunsicker L, Kusek JW, et al. The effects of dietary protein restriction and blood-pressure control on the progression of chronic renal disease. Modification of Diet in Renal Disease Study Group. N Engl J Med. 1994;330:877–84.

    Article  CAS  PubMed  Google Scholar 

  91. Arguedas JA, Perez MI, Wright JM. Treatment blood pressure targets for hypertension. Cochrane Database Syst Rev. 2009;3:CD004349.

    PubMed  Google Scholar 

  92. Sarnak MJ, Green T, Wang X, Beck G, Kusek JW, Collins AJ, et al. The effect of a lower target blood pressure on the progression of kidney disease: long-term follow-up of the modification of diet in renal disease study. Ann Intern Med. 2005;142:342–51.

    Article  PubMed  Google Scholar 

  93. The ESCAPE Trial Group. Strict blood-pressure control and progression of renal failure in children. N Engl J Med. 2009;361:1639–50.

    Article  Google Scholar 

  94. Wheeler DC, Becker GJ. Summary of KDIGO guideline. What do we really know about management of blood pressure in patients with chronic kidney disease? Kidney Int. 2013;83:377–83.

    Article  CAS  PubMed  Google Scholar 

  95. Messerli FH, Mancia G, Conti R, Hewkin AC, Kupfer S, Champion A, et al. Dogma disputed: can aggressively lowering blood pressure in hypertensive patients with coronary artery disease be dangerous. Ann Intern Med. 2006;144:884–93.

    Article  PubMed  Google Scholar 

  96. Kovesdy CP, Lu JL, Molnar MZ, Ma JZ, Canada RB, Streja E, et al. Observational modeling of strict vs conventional blood pressure control in patients with chronic kidney disease. JAMA Intern Med. 2014;174:1442–9.

    Article  PubMed Central  PubMed  Google Scholar 

  97. ACCORD Study Group, Cushman WC, Evans GW, Byington RP, Goff Jr DC, Grimm Jr RH, et al. Effects of intensive blood-pressure control in type 2 diabetes mellitus. N Engl J Med. 2010;362:1575–85.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Institutes of Health grants DK-40426, DK-61653 and a Merit Review Award and a Career Development Award 1IK2BX001285 (A.P.) from the Office of Research and Development of the Department of Veterans Affairs. The authors wish to thank Martha Prado for her secretarial support.

Compliance with Ethics Guidelines

Conflict of Interest

Anil Bidani, Karen Griffin, Krishna Pothugunta, and Aaron Polichnowski have no relevant disclosures to report.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anil K Bidani.

Additional information

This article is part of the Topical Collection on Hypertension

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

A Griffin, K., Pothugunta, K., Polichnowski, A.J. et al. The Role of Systemic Blood Pressure in the Progression of Chronic Kidney Disease. Curr Cardiovasc Risk Rep 9, 23 (2015). https://doi.org/10.1007/s12170-015-0450-9

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s12170-015-0450-9

Keywords

Navigation