Skip to main content
Log in

Management of Osteoporosis in Adults with Cystic Fibrosis

  • Therapy In Practice
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

Cystic fibrosis (CF) is the most common genetic disease that causes respiratory failure within the Caucasian population. The life span of patients with CF has gradually increased from a median of 2 years of age to >30 years. Concurrent with this increased lifespan, a variety of other nutritional, endocrine and bone issues have been recognised. Decreased absorption of fat-soluble vitamins (D and K in particular) because of pancreatic insufficiency, altered sex hormone production, chronic inflammation, a lack of physical activity, glucocorticoid treatment and an intrinsic hyper-resorptive bone physiology are some of the factors that contribute to the prominence of bone disease within the CF population. In some series, three-quarters of adult patients with CF have osteopenia or osteoporosis. Lung transplantation is one viable treatment for patients with end-stage CF, which requires a lifetime of antirejection medication. Immunosuppressant therapies have a detrimental effect on bone mineral density (BMD).

To combat the multifactorial nature of CF-related bone disease, advances in nutritional and vitamin supplementation, and anti-resorptive and anabolic therapies have evolved. Chronic vitamin D depletion contributes to bone disease in the CF population. The isoform of vitamin D that is the best and safest supplement, with the lowest cost, has yet to be identified. However, it is clear that many patients with CF who receive the standard of care (i.e. two daily combination vitamin A, D, E and K tablets [ADEKs®]) may still be vitamin D-deficient. More aggressive supplementation needs to be individualised, with close monitoring of serum 25-hydroxyvitamin D levels. Similarly, routine calcium supplementation may be important, and evidence is accumulating that vitamin K also plays an important role in maximising and maintaining BMD. Early recognition and treatment of delayed puberty in adolescents and hypogonadism in adults with hormone replacement therapy is recommended to maintain BMD in patients with CF. Bisphosphonates, including pamidronic acid, etidronic acid and alendronic acid, reduce bone resorption by inhibiting the recruitment and function of osteoclasts. Pamidronic acid is beneficial in improving BMD in CF patients before and after transplantation. Bisphosphonate therapy and minimisation of glucocorticoid dosage have been shown to be efficacious in glucocorticoid-induced osteoporosis. Teriparatide is the first US FDA-approved anabolic growth agent for bone, and has been shown to increase BMD and decrease fracture incidence in postmenopausal women. Teriparatide may offer a new avenue for treating bone disease in CF since many patients may have poor bone formation as well as accelerated bone breakdown. Numerous clinical trials are underway to optimise treatment of CF osteoporosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. Use of trade names is for product identification only and does not imply endorsement.

References

  1. Hahn TJ, Squires AE, Halstead LR, et al. Reduced serum 25-hydroxyvitamin D concentration and disordered mineral metabolism in patients with cystic fibrosis. J Pediatr 1979; 94(1): 38–42

    Article  PubMed  CAS  Google Scholar 

  2. Mischler EH, Chesney J, Chesney RW, et al. Demineralization in cystic fibrosis detected by direct photon absorptiometry. Am J Dis Child 1979; 133: 632–5

    PubMed  CAS  Google Scholar 

  3. Bachrach LK, Loutit CW, Moss RB. Osteopenia in adults with cystic fibrosis. Am J Med 1994; 96: 27–34

    Article  PubMed  CAS  Google Scholar 

  4. Bhudhikanok GS, Wang MC, Marcus R, et al. Bone acquisition and loss in children and adults with cystic fibrosis: a longitudinal study. J Pediatr 1998; 133: 18–27

    Article  PubMed  CAS  Google Scholar 

  5. Henderson RC, Madsen CD. Bone density in children and adolescents with cystic fibrosis. J Pediatr 1996; 128: 28–34

    Article  PubMed  CAS  Google Scholar 

  6. Haworth CS, Selby L, Webb AK, et al. Low bone mineral density in adults with cystic fibrosis. Thorax 1999; 54: 961–7

    Article  PubMed  CAS  Google Scholar 

  7. Laursen EM, Molgaard C, Michaelsen KF, et al. Bone mineral status in 134 patients with cystic fibrosis. Arch Dis Child 1999; 81(3): 235–40

    Article  PubMed  CAS  Google Scholar 

  8. Salamoni F, Roulet M, Gudinchet F, et al. Bone mineral content in cystic fibrosis patients: correlation with fat-free mass. Arch Dis Child 1996; 74: 314–8

    Article  PubMed  CAS  Google Scholar 

  9. Grey AB, Ames RW, Matthews RD, et al. Bone mineral density and body composition in adult patients with cystic fibrosis. Thorax 1993; 48: 589–93

    Article  PubMed  CAS  Google Scholar 

  10. Shaw N, Bedford C, Heaf D, et al. Osteopenia in adults with cystic fibrosis. Am J Med 1995; 99: 690–2

    Article  PubMed  CAS  Google Scholar 

  11. Conway S, Morton AM, Oldroyd B, et al. Osteoporosis and osteopenia in adults and adolescents with cystic fibrosis: prevalence and associated factors. Thorax 2000; 55: 798–804

    Article  PubMed  CAS  Google Scholar 

  12. Registry CFF. Annual data base report. Bethesda (MD): Cystic Fibrosis Foundation, 2000

    Google Scholar 

  13. Hardin DS, Arumugan R, Seilheimer DK, et al. Normal bone mineral density in cystic fibrosis. Arch Dis Child 2001; 84: 262–8

    Article  Google Scholar 

  14. Aris RM, Renner JB, Winders AD, et al. Increased rate of fractures and severe kyphosis: sequelae of living to adulthood with cystic fibrosis. Ann Intern Med 1998; 128: 186–93

    PubMed  CAS  Google Scholar 

  15. Elkin SL, Fairney A, Burnett S, et al. Vertebral deformities and low bone mineral density in adults with cystic fibrosis: a cross-sectional study. Osteoporos Int 2001; 12: 366–72

    Article  PubMed  CAS  Google Scholar 

  16. Bachrach LK. Acquisition of optimal bone mass in childhood and adolescence. Trends Endocrinol Metab 2001; 12: 22–7

    Article  PubMed  CAS  Google Scholar 

  17. Baroncelli GI, De Luca F, Maguzzu G, et al. Bone demineralization in cystic fibrosis: evidence of imbalance between bone formation and degradation. Pediatr Res 1997; 41: 397–403

    Article  PubMed  CAS  Google Scholar 

  18. Aris RM, Ontjes DA, Buell HE, et al. Abnormal bone turnover in cystic fibrosis adults. Osteoporos Int 2002; 13: 151–7

    Article  PubMed  CAS  Google Scholar 

  19. Haworth CS, Selby L, Horrocks AW, et al. A prospective study of change in bone mineral density over one year in adults with cystic fibrosis. Thorax 2002 Aug; 57(8): 719–23

    Article  PubMed  CAS  Google Scholar 

  20. Elkin SL, Vedi S, Bord S, et al. Histomorphometric analysis of bone biopsies from the Iliac crest of adults with cystic fibrosis. Am J Respir Crit Care Med 2002 Dec; 166(11): 1470–4

    Article  PubMed  Google Scholar 

  21. Haworth CS, Webb AK, Egan JJ, et al. Bone histomorphometry in adult patients with cystic fibrosis. Chest 2000 Aug; 118(2): 434–9

    Article  PubMed  CAS  Google Scholar 

  22. Kerem E, Reisman J, Corey M, et al. Prediction of mortality in patients with cystic fibrosis. N Engl J Med 1992; 326(18): 1187–91

    Article  PubMed  CAS  Google Scholar 

  23. Aris RM, Neuringer I, Weiner MA, et al. Severe osteoporosis before and after lung transplantation. Chest 1996; 109: 1176–83

    Article  PubMed  CAS  Google Scholar 

  24. Jelalian E, Stark LJ, Reynolds L, et al. Nutrition intervention for weight gain in cystic fibrosis: a meta analysis. J Pediatr 1998; 132 (3 Pt 1): 486–92

    Article  PubMed  CAS  Google Scholar 

  25. Lark RK, Lester GE, Ontjes DA, et al. Diminished and erratic absorption of ergocalciferol in adult cystic fibrosis patients. Am J Clin Nutr 2001; 73: 602–6

    PubMed  CAS  Google Scholar 

  26. Boucher GF, Lands LC, Hay JA, et al. Activity levels and the relationship to lung function and nutritional status in children with cystic fibrosis. Am J Phys Med Rehabil 1997 Jul–Aug; 76(4): 311–5

    Article  PubMed  CAS  Google Scholar 

  27. Lands LC, Heigenhauser CM, Jones NL. Analysis. of factors limiting maxinial exercise perflormance in cystic fibrosis. Clin Sci (Lond) 1992 Oct; 83(4): 391–7

    CAS  Google Scholar 

  28. Gulmans VA, de Meer K, Brackel HJ, et al. Outpatient exercise training in children with, cystic fibrosis: physiological effects, perceived competence, and acceptability. Pediatr Pulmonol 1999 Jul; 28(l):39–46

    Article  PubMed  CAS  Google Scholar 

  29. Ott SM, Aitken ML. Osteoporosis in patients with cystic fibrosis. Clin Chest Med 1998; 19: 555–67

    Article  PubMed  CAS  Google Scholar 

  30. Haslam RH, Borovnicar DJ, Stroud DB, et al. Correlates of prepubertal bone mineral density in cystic fibrosis. Arch Dis Child 2001; 85(2): 166–71

    Article  PubMed  CAS  Google Scholar 

  31. Stead RJ, Hodson ME, Batten JC, et al. Amenorrhoea in cystic fibrosis. Clin Endocrinol (Oxf) 1987; 26(2): 187–95

    Article  CAS  Google Scholar 

  32. Landon C, Rosenfeld RG. Short stature and pubertal delay in male adolescents with cystic fibrosis: androgen treatment. Am J Dis Child 1984; 138(4): 388–91

    PubMed  CAS  Google Scholar 

  33. Moshang T, Holsclaw Jr DS. Menarchal determinants in cystic fibrosis. Am J Dis Child 1980; 134(12): 1139–42

    PubMed  CAS  Google Scholar 

  34. Alemzadeh R, Upchurch L, McCarthy V. Anabolic effects of growth hormone treatment in young children with cystic fibrosis. J Am Coll Nutr 1998 Oct; 17(5): 419–24

    PubMed  CAS  Google Scholar 

  35. Hardin DS. Growth problems and growth hormone treatment in children with cystic fibrosis. J Pediatr Endocrinol Metab 2002 May; 15 Suppl. 2: 731–5

    Google Scholar 

  36. Johannesson M, Landgren BM, Csemiczky G, et al. Female patients with cystic fibrosis suffer from reproductive endocrinological disorders despite good clinical status. Hum Reprod 1998; 13(8): 2092–7

    Article  PubMed  CAS  Google Scholar 

  37. Goldring SR. Pathogenesis of bone and cartilage destruction in rheumatoid arthritis. Rheumatology (Oxf) 2003 May; 42 Suppl. 2: ii11–6

    Article  CAS  Google Scholar 

  38. Grey A, Mitnick MA, Shapses S, et al. Circulating levels of interleukin-6 and tumor necrosis factor-alpha are elevated in primary hyperparathyroidisrn and correlate with markers of bone resorption — a clinical research center study. J Clin Endocrinol Metab 1996 Oct; 81: 3450–4

    Article  PubMed  CAS  Google Scholar 

  39. Manolagas SC, Jilka RL. Bone marrow, cytokines, and bone remodeling. N EngI J Med 1995; 332: 305–11

    Article  CAS  Google Scholar 

  40. Aris RM, Stephens AR, Ontjes DA, et al. Adverse alterations in bone metabolism are associated with lung infection in adults with cystic fibrosis. Am J Respir Crit Care Med 2000 Nov; 162: 1674–8

    PubMed  CAS  Google Scholar 

  41. McColley SA, Stellmach V, Boas SR, et al. Serum vascular endothelial growth factor is elevated in cystic fibrosis and decreases with treatment of acute pulmonary exacerbation. Am J Respir Crit Care Med 2000 Jun; 161(6): 1877–80

    PubMed  CAS  Google Scholar 

  42. Sambrook N. Corticosteroid osteoporosis: practical implications of recent trials. J Bone Miner Res 2000; 15: 1645–9

    Article  PubMed  CAS  Google Scholar 

  43. Flohr F, Lutz A, App EM, et al. Bone mineral density and quantitative ultrasound in adults with cystic fibrosis. Eur J Endocrinol 2002; 146(4): 531–6

    Article  PubMed  CAS  Google Scholar 

  44. Tschopp O, Boehler A, Speich R, et al. Osteoporosis before lung transplantation: association with low body mass index, but not with underlying disease. Am J Transplant 2002; 2(2): 167–72

    Article  PubMed  Google Scholar 

  45. Dubois EF, Roder E, Dekhuijzen PN, et al. Dual x-ray absorptiometry outcomes in male COPD patients after treatment with different glucocorticoid regimens. Chest 2002; 121(5): 1456–63

    Article  PubMed  CAS  Google Scholar 

  46. Cystic Fibrosis Foundation. Cystic Fibrosis Foundation patient registry annual data report. Bethesda (MD): Cystic Fibrosis Foundation, 2001

    Google Scholar 

  47. Shane E, Silverberg SJ, Donovan D, et al. Osteoporosis in lung transplantation candidates with end-stage pulmonary disease. Am J Med 1996; 101: 262–9

    Article  PubMed  CAS  Google Scholar 

  48. Ferrari SL, Nicod L, Hamacher J, et al. Osteoporosis in patients undergoing lung transplantation. Eur Respir J 1996; 9(11): 2378–82

    Article  PubMed  CAS  Google Scholar 

  49. Spira A, Gutierrez C, Chaparro C, et al. Osteoporosis and lung transplantation: a prospective study. Chest 2000; 117(2): 476–81

    Article  PubMed  CAS  Google Scholar 

  50. Hanly JG, McKenna MJ, Quigley C, et al. Hypovitaminosis D and response to supplementation in older patients with cystic fibrosis. Q J Med 1985; 56(219): 377–85

    PubMed  CAS  Google Scholar 

  51. Kelly E, Marsh R, Pencharz P, et al. Effect of Vitamin D supplementation on low serum 25-hydroxyvitamin D in adults with cystic fibrosis [abstract no. 478]. Pediatr Pulmonol 2002; 24 Suppl.: 344

    Google Scholar 

  52. Ontjes DA, Lark RK, Lester GE, et al. Vitamin D depletion and replacement in patients with cystic fibrosis. In: Norman AW, Bouillon R, Thomasset M, editors. Vitamin D endocrine system: structural, biological, genetic and clinical aspects. Reverside (CA): University of California, 2000: 893–6

    Google Scholar 

  53. Vieth R. Vitamin D supplementation, 25-hydroxyvitamin D concentrations, and safety. Am J Clin Nutr 1999; 69: 842–56

    PubMed  CAS  Google Scholar 

  54. Brown SA, Ontjes DA, Lark RK, et al. Short-term calcitriol administration improves calcium homeostasis in adults with CF. Osteoporosis Int 2003; 14(5): 442–9

    Article  CAS  Google Scholar 

  55. Enfissi L, Bianchi ML, Galbiati E, et al. Osteoporosis in CF: calcifediol therapy increases bone mineral density (BMD) [abstract no. 475]. Pediatric Pulm 2001; 22 Suppl.: 334

    Google Scholar 

  56. Itioue T, Sugiyarna T, Matsubara T, et al. Inverse correlation between the changes of lumbar bone mineral density and serum undercarboxylated osteocalcin after vitamin K2 treatment in children treated with glucocorticoid and alfacalcidol. Endocr J 2001; 48: 11–8

    Article  Google Scholar 

  57. Shiraki M, Shiraki Y, Aoki C, et al. Vitamin K2 effectively prevents fractures and sustains lumbar bone mineral density in osteoporosis. J Bone Miner Res. 2000; 15: 515–21

    Article  PubMed  CAS  Google Scholar 

  58. Institute of Medicine. Dietary reference intakes for vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. Washington, DC: National Academy Press, 2001

    Google Scholar 

  59. Aris RM, Brown SA, Oritjes DA, et al. Reduced carboxylated osteocilcin levels in cystic fibrosis [letter]. Am J Respir Crit Care Med 2003 Nov 1; 168(9):1129

    PubMed  Google Scholar 

  60. de Groen C, Lubbe DF, Hirsch LJ, et al. Esophagitis associated with the use of alendronate. N Engl J Med 1996 Oct 3; 335(14): 1016–21

    Article  PubMed  Google Scholar 

  61. Shnitzer T, Bone HG, Crepaldi G, et al. Therapeutic equivalence of alendronate 70mg once-weekly and alendronate 10mg daily in the treatment of osteoporosis: Alendronate Once-Weekly Study Group. Aging (Milano) 2000; 12(1): 1–12

    Google Scholar 

  62. Aris RM, Lester GE, Renner RB, et al. Efficacy of pamidronate for osteoporosis in patients with cystic fibrosis following lung transplantation. Am J Respir Crit Care Med 2000; 162 (3 Pt 1): 941–6

    PubMed  CAS  Google Scholar 

  63. Haworth CS, Selby L, Adams JE, et al. Effect of intravenous pamidronate on bone mineral density in adults with cystic fibrosis. Thorax 2001; 56(4): 314–6

    Article  PubMed  CAS  Google Scholar 

  64. Haworth CS, Selby L, Webb AK, et al. Severe bone pain after intravenous pamidronate in adult patients with cystic fibrosis. Lancet 1998; 352(9142): 1753–4

    Article  PubMed  CAS  Google Scholar 

  65. Haworth CS, Selby L, Webb AK, et al. Oral corticosteroids and bone pain after pamidronate in adults with cystic fibrosis [letter]. Lancet 1999; 353(9167): y1886

    Article  Google Scholar 

  66. Saag KG, Emkey R, Schnitzer TJ, et al. Glucocorticoid-Induced Osteoporosis Intervention Study Group. Alendronate for the prevention and treatment of glucocorticoid-induced osteoporosis. N Engl J Med 1998; 339(5): 292–9

    Article  PubMed  CAS  Google Scholar 

  67. Aris RM, Lester GE, Caminiti M, et al. Efficacy of alendronate in cystic fibrosis adults with low bone density [online]. Available from URL: http://ajrccm.atsjournals.org/articlesinpress.shtml [Accessed 2003 Dec 5]. Am J Respir Crit Care Med. Epub 2003 Oct 16

  68. Adachi JD, Bensen WG, Brown J, et al. Intermittent etidronate therapy to prevent corticosteroid-induced osteoporosis. N Engl J Med 1997 Aug 7; 337(6): 382–7

    Article  PubMed  CAS  Google Scholar 

  69. Hodgson SF, Watts NB, Bilezikian JP, et al. American Association of Clinical Endocrinologists 2001 Medical Guidelines for Clinical Practice for the Prevention and Management of Post-menopausal Osteoporosis. Endocr Pract 2001 Jul–Aug; 7(4): 293–312

    Google Scholar 

  70. Hardin DS, Ellis KJ, Dyson M, et al. Growth hormone improves clinical status in prepubertal children with cystic fibrosis: results of a randomized controlled trial. J Pediatr 2001; 139(5): 636–42

    Article  PubMed  CAS  Google Scholar 

  71. Hardin DS, Stratton R, Kramer JC, et al. Growth hormone improves weight velocity and height velocity in prepubertal children with cystic fibrosis. Horm Metab Res 1998; 30(10): 636–41

    Article  PubMed  CAS  Google Scholar 

  72. Hardin DS, Ellis KJ, Dyson M, et al. Growth hormone decreases protein catabolism in children with cystic fibrosis. J Clin Endocrinol Metab 2001; 86(9): 4424–8

    Article  PubMed  CAS  Google Scholar 

  73. Hardin DS, Rice J. Growth hormone improves bone mineral content in prepubertal and adolescent children with CF [abstract no. 456]. Pediatr Pulmonol 2002; 24 Suppl.: 336

    Google Scholar 

  74. Body JJ, Gaich GA, Scheele WH, et al. A randomized double-blind trial to compare the efficacy of teriparatide [recombinant human parathyroid hormone (1–34)] with alendronate in post-menopausal women with osteoporosis. J Clin Endocrinol Metab 2002; 87(10): 4528-35

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the attendees of the 2002 June 11–12 Cystic Fibrosis Foundation consensus conference on bone health and disease for their input. Additionally, the authors would like to thank SA Brown and DA Ontjes for their guidance and suggestions for this manuscript. We received grant support from the Cystic Fibrosis Foundation (ARIS00A0), the US FDA (FD-R-001518-01), the Clinical Nutrition Research Unit (NIH DK 56350), Merck and Co., Inc. (Medical School Grants Program) and the Verne S. Caviness General Center for Clinical Research at the University of North Carolina at Chapel Hill.

R.M. Aris received a grant of $US30 000 from the Merck Medical School Grants Program to provide seed money for an investigator-initiated, US FDA-sponsored study of alendronate versus placebo in adults with cystic fibrosis that resulted in the study cited in section 3.[67]

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert M. Aris.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hecker, T.M., Aris, R.M. Management of Osteoporosis in Adults with Cystic Fibrosis. Drugs 64, 133–147 (2004). https://doi.org/10.2165/00003495-200464020-00002

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003495-200464020-00002

Keywords

Navigation