Skip to main content

Cystic Fibrosis-Related Bone Disease: Current Knowledge and Future Directions

  • Chapter
  • First Online:
Cystic Fibrosis

Part of the book series: Respiratory Medicine ((RM))

Abstract

A high prevalence of low bone mineralization is documented in adult patients with cystic fibrosis (CF). Osteopenia is present in up to 85% of adult patients and osteoporosis in 10–34%. In children, study results are discordant probably because of comparisons to different control populations and corrections for bone size in growing children. Malnutrition, inflammation, vitamin D and vitamin K deficiency, altered sex hormone production, glucocorticoid therapy, and physical inactivity are well-known risk factors for poor bone health. Puberty is a critical period for bone mineralization and requires a careful follow-up to achieve optimal peak bone mass. Strategies for optimizing bone health, such as monitoring bone mineral density (BMD) and providing proactive, preventive care, are necessary from childhood through to adolescence to minimize CF-related bone disease in adult CF patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rowe SM, Miller S, Sorscher EJ. Cystic fibrosis. N Engl J Med. 2005;352:1992–2001.

    Article  CAS  PubMed  Google Scholar 

  2. Haworth CS, Selby PL, Webb AK, et al. Low bone mineral density in adults with cystic fibrosis. Thorax. 1999;54:961–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Mischler EH, Chesney PJ, Chesney RW, et al. Demineralization in cystic fibrosis detected by direct photon absorptiometry. Am J Dis Child. 1979;133:632–5.

    Article  CAS  PubMed  Google Scholar 

  4. Sermet-Gaudelus I, Souberbielle JC, Ruiz JC, et al. Low bone mineral density in young children with cystic fibrosis. Am J Respir Crit Care Med. 2007;175:951–7.

    Article  PubMed  Google Scholar 

  5. Paccou J, Zeboulon N, Combescure C, et al. The prevalence of osteoporosis, osteopenia, and fractures among adults with cystic fibrosis: a systematic literature review with meta-analysis. Calcif Tissue Int. 2010;86:1–7.

    Article  CAS  PubMed  Google Scholar 

  6. Gensburger D, Boutroy S, Chapurlat R, et al. Reduced bone volumetric density and weak correlation between infection and bone markers in cystic fibrosis adult patients. Osteoporos Int. 2016;27:2803–13.

    Article  CAS  PubMed  Google Scholar 

  7. Vanacor R, Raimundo FV, Marcondes NA, et al. Prevalence of low bone mineral density in adolescents and adults with cystic fibrosis. Rev Assoc Med Bras (1992). 2014;60:53–8.

    Article  Google Scholar 

  8. Putman MS, Baker JF, Uluer A, et al. Trends in bone mineral density in young adults with cystic fibrosis over a 15 year period. J Cyst Fibros. 2015;14:526–32.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Sheikh S, Gemma S, Patel A. Factors associated with low bone mineral density in patients with cystic fibrosis. J Bone Miner Metab. 2015;33:180–5.

    Article  CAS  PubMed  Google Scholar 

  10. Legroux-Gérot I, Leroy S, Prudhomme C, et al. Bone loss in adults with cystic fibrosis: prevalence, associated factors, and usefulness of biological markers. Joint Bone Spine. 2012;79:73–7.

    Article  PubMed  Google Scholar 

  11. Conway SP, Morton AM, Oldroyd B, et al. Osteoporosis and osteopenia in adults and adolescents with cystic fibrosis: prevalence and associated factors. Thorax. 2000;55:798–804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mathiesen IH, Pressler T, Oturai P, et al. Osteoporosis is associated with deteriorating clinical status in adults with cystic fibrosis. Int J Endocrinol. 2018;2018:4803974.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Smith N, Lim A, Yap M, et al. Bone mineral density is related to lung function outcomes in young people with cystic fibrosis-a retrospective study. Pediatr Pulmonol. 2017;52:1558–64.

    Article  PubMed  Google Scholar 

  14. Papaioannou A, Kennedy CC, Freitag A, et al. Alendronate once weekly for the prevention and treatment of bone loss in Canadian adult cystic fibrosis patients (CFOS trial). Chest. 2008;134:794–800.

    Article  CAS  PubMed  Google Scholar 

  15. Chapman I, Greville H, Ebeling PR, et al. Intravenous zoledronate improves bone density in adults with cystic fibrosis (CF). Clin Endocrinol. 2009;70:838–46.

    Article  CAS  Google Scholar 

  16. Gronowitz E, Garemo M, Lindblad A, et al. Decreased bone mineral density in normal-growing patients with cystic fibrosis. Acta Paediatr. 2003;92:688–93.

    Article  CAS  PubMed  Google Scholar 

  17. Ujhelyi R, Treszl A, Vásárhelyi B, et al. Bone mineral density and bone acquisition in children and young adults with cystic fibrosis: a follow-up study. J Pediatr Gastroenterol Nutr. 2004;38:401–6.

    Article  PubMed  Google Scholar 

  18. Bianchi ML, Romano G, Saraifoger S, et al. BMD and body composition in children and young patients affected by cystic fibrosis. J Bone Miner Res. 2006;21:388–96.

    Article  PubMed  Google Scholar 

  19. Grey V, Atkinson S, Drury D, et al. Prevalence of low bone mass and deficiencies of vitamins D and K in pediatric patients with cystic fibrosis from 3 Canadian centers. Pediatrics. 2008;122:1014–20.

    Article  PubMed  Google Scholar 

  20. Caldeira RJ do A, Fonseca V de M, Gomes SCDS, et al. Prevalence of bone mineral disease among adolescents with cystic fibrosis. J Pediatr. 2008;84:18–25.

    Google Scholar 

  21. Donadio MVF, de Souza GC, Tiecher G, et al. Bone mineral density, pulmonary function, chronological age, and age at diagnosis in children and adolescents with cystic fibrosis. J Pediatr. 2013;89:151–7.

    Article  Google Scholar 

  22. Lucidi V, Bizzarri C, Alghisi F, et al. Bone and body composition analyzed by Dual-energy X-ray Absorptiometry (DXA) in clinical and nutritional evaluation of young patients with Cystic Fibrosis: a cross-sectional study. BMC Pediatr. 2009;9:61.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Buntain HM, Greer RM, Schluter PJ, et al. Bone mineral density in Australian children, adolescents and adults with cystic fibrosis: a controlled cross sectional study. Thorax. 2004;59:149–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bravo MP, Balboa P, Torrejón C, et al. Bone mineral density, lung function, vitamin D and body composition in children and adolescents with cystic fibrosis: a multicenter study. Nutr Hosp. 2018;35:789–95.

    Google Scholar 

  25. Sharma S, Jaksic M, Fenwick S, et al. Accrual of bone mass in children and adolescents with cystic fibrosis. J Clin Endocrinol Metab. 2017;102:1734–9.

    Article  PubMed  Google Scholar 

  26. Elkin SL, Fairney A, Burnett S, et al. Vertebral deformities and low bone mineral density in adults with cystic fibrosis: a cross-sectional study. Osteoporos Int. 2001;12:366–72.

    Article  CAS  PubMed  Google Scholar 

  27. Papaioannou A, Kennedy CC, Freitag A, et al. Longitudinal analysis of vertebral fracture and BMD in a Canadian cohort of adult cystic fibrosis patients. BMC Musculoskelet Disord. 2008;9:125.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Bhudhikanok GS, Wang MC, Marcus R, et al. Bone acquisition and loss in children and adults with cystic fibrosis: a longitudinal study. J Pediatr. 1998;133:18–27.

    Article  CAS  PubMed  Google Scholar 

  29. Henderson RC, Madsen CD. Bone density in children and adolescents with cystic fibrosis. J Pediatr. 1996;128:28–34.

    Article  CAS  PubMed  Google Scholar 

  30. Rossini M, Viapiana O, Del Marco A, et al. Quantitative ultrasound in adults with cystic fibrosis: correlation with bone mineral density and risk of vertebral fractures. Calcif Tissue Int. 2007;80:44–9.

    Article  CAS  PubMed  Google Scholar 

  31. Stahl M, Holfelder C, Kneppo C, et al. Multiple prevalent fractures in relation to macroscopic bone architecture in patients with cystic fibrosis. J Cyst Fibros. 2018;17:114–20.

    Article  PubMed  Google Scholar 

  32. Rovner AJ, Zemel BS, Leonard MB, et al. Mild to moderate cystic fibrosis is not associated with increased fracture risk in children and adolescents. J Pediatr. 2005;147:327–31.

    Article  PubMed  Google Scholar 

  33. Raisz LG. Clinical practice. Screening for osteoporosis. N Engl J Med. 2005;353:164–71.

    Article  CAS  PubMed  Google Scholar 

  34. Sermet-Gaudelus I, Bianchi ML, Garabédian M, et al. European cystic fibrosis bone mineralisation guidelines. J Cyst Fibros. 2011;10(Suppl 2):S16–23.

    Article  PubMed  Google Scholar 

  35. Schoenau E, Land C, Stabrey A, et al. The bone mass concept: problems in short stature. Eur J Endocrinol. 2004;151 Suppl 1:S87–91.

    Article  CAS  PubMed  Google Scholar 

  36. Nishiyama KK, Agarwal S, Kepley A, et al. Adults with cystic fibrosis have deficits in bone structure and strength at the distal tibia despite similar size and measuring standard and relative sites. Bone. 2018;107:181–7.

    Article  PubMed  Google Scholar 

  37. O’Brien CE, Com G, Fowlkes J, et al. Peripheral quantitative computed tomography detects differences at the radius in prepubertal children with cystic fibrosis compared to healthy controls. PLoS One. 2018;13:e0191013.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Braun C, Bacchetta J, Braillon P, et al. Children and adolescents with cystic fibrosis display moderate bone microarchitecture abnormalities: data from high-resolution peripheral quantitative computed tomography. Osteoporos Int. 2017;28:3179–88.

    Article  CAS  PubMed  Google Scholar 

  39. Aris RM, Merkel PA, Bachrach LK, et al. Guide to bone health and disease in cystic fibrosis. J Clin Endocrinol Metab. 2005;90:1888–96.

    Article  CAS  PubMed  Google Scholar 

  40. Tejero S, Cejudo P, Quintana-Gallego E, et al. The role of daily physical activity and nutritional status on bone turnover in cystic fibrosis: a cross-sectional study. Braz J Phys Ther. 2016;20:206–12.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Dodd JD, Barry SC, Barry RBM, et al. Bone mineral density in cystic fibrosis: benefit of exercise capacity. J Clin Densitom. 2008;11:537–42.

    Article  PubMed  Google Scholar 

  42. MacKelvie KJ, Petit MA, Khan KM, et al. Bone mass and structure are enhanced following a 2-year randomized controlled trial of exercise in prepubertal boys. Bone. 2004;34:755–64.

    Article  PubMed  Google Scholar 

  43. Frangolias DD, Paré PD, Kendler DL, et al. Role of exercise and nutrition status on bone mineral density in cystic fibrosis. J Cyst Fibros. 2003;2:163–70.

    Article  PubMed  Google Scholar 

  44. Britto MT, Garrett JM, Konrad TR, et al. Comparison of physical activity in adolescents with cystic fibrosis versus age-matched controls. Pediatr Pulmonol. 2000;30:86–91.

    Article  CAS  PubMed  Google Scholar 

  45. Ionescu AA, Evans WD, Pettit RJ, et al. Hidden depletion of fat-free mass and bone mineral density in adults with cystic fibrosis. Chest. 2003;124:2220–8.

    Article  PubMed  Google Scholar 

  46. Baker JF, Putman MS, Herlyn K, et al. Body composition, lung function, and prevalent and progressive bone deficits among adults with cystic fibrosis. Joint Bone Spine. 2016;83:207–11.

    Article  PubMed  Google Scholar 

  47. Kelly A, Schall J, Stallings VA, et al. Trabecular and cortical bone deficits are present in children and adolescents with cystic fibrosis. Bone. 2016;90:7–14.

    Article  PubMed  Google Scholar 

  48. Yakar S, Werner H, Rosen CJ. Insulin-like growth factors: actions on the skeleton. J Mol Endocrinol. 2018;61:T115–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Turner MA, Goldwater D, David TJ. Oxalate and calcium excretion in cystic fibrosis. Arch Dis Child. 2000;83:244–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Schulze KJ, Cutchins C, Rosenstein BJ, et al. Calcium acquisition rates do not support age-appropriate gains in total body bone mineral content in prepuberty and late puberty in girls with cystic fibrosis. Osteoporos Int. 2006;17:731–40.

    Article  CAS  PubMed  Google Scholar 

  51. Wolfenden LL, Judd SE, Shah R, et al. Vitamin D and bone health in adults with cystic fibrosis. Clin Endocrinol. 2008;69:374–81.

    Article  CAS  Google Scholar 

  52. Holick MF. Vitamin D deficiency. N Engl J Med. 2007;357:266–81.

    Article  CAS  PubMed  Google Scholar 

  53. Buntain HM, Schluter PJ, Bell SC, et al. Controlled longitudinal study of bone mass accrual in children and adolescents with cystic fibrosis. Thorax. 2006;61:146–54.

    Article  CAS  PubMed  Google Scholar 

  54. Stephenson A, Brotherwood M, Robert R, et al. Cholecalciferol significantly increases 25-hydroxyvitamin D concentrations in adults with cystic fibrosis. Am J Clin Nutr. 2007;85:1307–11.

    Article  CAS  PubMed  Google Scholar 

  55. Greer RM, Buntain HM, Potter JM, et al. Abnormalities of the PTH-vitamin D axis and bone turnover markers in children, adolescents and adults with cystic fibrosis: comparison with healthy controls. Osteoporos Int. 2003;14:404–11.

    Article  CAS  PubMed  Google Scholar 

  56. Yim S, Dhawan P, Ragunath C, et al. Induction of cathelicidin in normal and CF bronchial epithelial cells by 1,25-dihydroxyvitamin D(3). J Cyst Fibros. 2007;6:403–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hewison M. Vitamin D and the intracrinology of innate immunity. Mol Cell Endocrinol. 2010;321:103–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Herscovitch K, Dauletbaev N, Lands LC. Vitamin D as an anti-microbial and anti-inflammatory therapy for Cystic Fibrosis. Paediatr Respir Rev. 2014;15:154–62.

    CAS  PubMed  Google Scholar 

  59. Vanstone MB, Egan ME, Zhang JH, et al. Association between serum 25-hydroxyvitamin D level and pulmonary exacerbations in cystic fibrosis. Pediatr Pulmonol. 2015;50:441–6.

    Article  PubMed  Google Scholar 

  60. Grossmann RE, Zughaier SM, Kumari M, et al. Pilot study of vitamin D supplementation in adults with cystic fibrosis pulmonary exacerbation: a randomized, controlled trial. Dermatoendocrinol. 2012;4:191–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Khazai NB, Judd SE, Jeng L, et al. Treatment and prevention of vitamin D insufficiency in cystic fibrosis patients: comparative efficacy of ergocalciferol, cholecalciferol, and UV light. J Clin Endocrinol Metab. 2009;94:2037–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Simoneau T, Sawicki GS, Milliren CE, et al. A randomized controlled trial of vitamin D replacement strategies in pediatric CF patients. J Cyst Fibros. 2016;15:234–41.

    Article  CAS  PubMed  Google Scholar 

  63. Sermet-Gaudelus I, Castanet M, Souberbielle J-C, et al. [Bone health in cystic fibrosis]. Arch Pediatr. 2009;16:616–18.

    Google Scholar 

  64. Brown SA, Ontjes DA, Lester GE, et al. Short-term calcitriol administration improves calcium homeostasis in adults with cystic fibrosis. Osteoporos Int. 2003;14:442–9.

    Article  CAS  PubMed  Google Scholar 

  65. Chapelon E, Garabedian M, Brousse V, et al. Osteopenia and vitamin D deficiency in children with sickle cell disease. Eur J Haematol. 2009;83:572–8.

    Article  CAS  PubMed  Google Scholar 

  66. Fewtrell MS, Benden C, Williams JE, et al. Undercarboxylated osteocalcin and bone mass in 8-12 year old children with cystic fibrosis. J Cyst Fibros. 2008;7:307–12.

    Article  CAS  PubMed  Google Scholar 

  67. Drury D, Grey VL, Ferland G, et al. Efficacy of high dose phylloquinone in correcting vitamin K deficiency in cystic fibrosis. J Cyst Fibros. 2008;7:457–9.

    Article  CAS  PubMed  Google Scholar 

  68. Compston JE, McClung MR, Leslie WD. Osteoporosis. Lancet. 2019;393:364–76.

    Article  CAS  PubMed  Google Scholar 

  69. Saggese G, Baroncelli GI, Bertelloni S. Puberty and bone development. Best Pract Res Clin Endocrinol Metab. 2002;16:53–64.

    Article  CAS  PubMed  Google Scholar 

  70. Umławska W, Sands D, Zielińska A. Age of menarche in girls with cystic fibrosis. Folia Histochem Cytobiol. 2010;48:185–90.

    Article  PubMed  Google Scholar 

  71. Bournez M, Bellis G, Huet F. Growth during puberty in cystic fibrosis: a retrospective evaluation of a French cohort. Arch Dis Child. 2012;97:714–20.

    Article  PubMed  Google Scholar 

  72. Johannesson M, Gottlieb C, Hjelte L. Delayed puberty in girls with cystic fibrosis despite good clinical status. Pediatrics. 1997;99:29–34.

    Article  CAS  PubMed  Google Scholar 

  73. Street ME, Spaggiari C, Volta C, et al. The IGF system and cytokine interactions and relationships with longitudinal growth in prepubertal patients with cystic fibrosis. Clin Endocrinol. 2009;70:593–8.

    Article  CAS  Google Scholar 

  74. Moshang T, Holsclaw DS. Menarchal determinants in cystic fibrosis. Am J Dis Child. 1980;134:1139–42.

    CAS  PubMed  Google Scholar 

  75. Festini F, Taccetti G, Repetto T, et al. Gestational and neonatal characteristics of children with cystic fibrosis: a cohort study. J Pediatr. 2005;147:316–20.

    Article  PubMed  Google Scholar 

  76. Rogan MP, Reznikov LR, Pezzulo AA, et al. Pigs and humans with cystic fibrosis have reduced insulin-like growth factor 1 (IGF1) levels at birth. Proc Natl Acad Sci U S A. 2010;107:20571–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Switzer M, Rice J, Rice M, et al. Insulin-like growth factor-I levels predict weight, height and protein catabolism in children and adolescents with cystic fibrosis. J Pediatr Endocrinol Metab. 2009;22:417–24.

    Article  CAS  PubMed  Google Scholar 

  78. Sermet-Gaudelus I, Souberbielle JC, Azhar I, et al. Insulin-like growth factor I correlates with lean body mass in cystic fibrosis patients. Arch Dis Child. 2003;88:956–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Stalvey MS, Anbar RD, Konstan MW, et al. A multi-center controlled trial of growth hormone treatment in children with cystic fibrosis. Pediatr Pulmonol. 2012;47:252–63.

    Article  PubMed  Google Scholar 

  80. Hardin DS, Adams-Huet B, Brown D, et al. Growth hormone treatment improves growth and clinical status in prepubertal children with cystic fibrosis: results of a multicenter randomized controlled trial. J Clin Endocrinol Metab. 2006;91:4925–9.

    Article  CAS  PubMed  Google Scholar 

  81. Wong SC, Dobie R, Altowati MA, et al. Growth and the growth hormone-insulin like growth factor 1 Axis in children with chronic inflammation: current evidence, gaps in knowledge, and future directions. Endocr Rev. 2016;37:62–110.

    Article  CAS  PubMed  Google Scholar 

  82. Schnabel D, Grasemann C, Staab D, et al. A multicenter, randomized, double-blind, placebo-controlled trial to evaluate the metabolic and respiratory effects of growth hormone in children with cystic fibrosis. Pediatrics. 2007;119:e1230–8.

    Article  PubMed  Google Scholar 

  83. Bessich JL, Nymon AB, Moulton LA, et al. Low levels of insulin-like growth factor-1 contribute to alveolar macrophage dysfunction in cystic fibrosis. J Immunol. 2013;191:378–85.

    Article  CAS  PubMed  Google Scholar 

  84. Lee HW, Cheng J, Kovbasnjuk O, et al. Insulin-like growth factor 1 (IGF-1) enhances the protein expression of CFTR. PLoS One. 2013;8:e59992.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Shead EF, Haworth CS, Barker H, et al. Osteoclast function, bone turnover and inflammatory cytokines during infective exacerbations of cystic fibrosis. J Cyst Fibros. 2010;9:93–8.

    Article  CAS  PubMed  Google Scholar 

  86. Haworth CS, Selby PL, Webb AK, et al. Inflammatory related changes in bone mineral content in adults with cystic fibrosis. Thorax. 2004;59:613–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Shead EF, Haworth CS, Gunn E, et al. Osteoclastogenesis during infective exacerbations in patients with cystic fibrosis. Am J Respir Crit Care Med. 2006;174:306–11.

    Article  CAS  PubMed  Google Scholar 

  88. Aris RM, Stephens AR, Ontjes DA, et al. Adverse alterations in bone metabolism are associated with lung infection in adults with cystic fibrosis. Am J Respir Crit Care Med. 2000;162:1674–8.

    Article  CAS  PubMed  Google Scholar 

  89. Ambroszkiewicz J, Sands D, Gajewska J, et al. Bone turnover markers, osteoprotegerin and RANKL cytokines in children with cystic fibrosis. Adv Med Sci. 2013;58:338–43.

    Article  CAS  PubMed  Google Scholar 

  90. Cairoli E, Eller-Vainicher C, Morlacchi LC, et al. Bone involvement in young adults with cystic fibrosis awaiting lung transplantation for end-stage respiratory failure. Osteoporos Int. Epub ahead of print 23 February 2019. https://doi.org/10.1007/s00198-019-04893-z.

  91. Aris RM, Neuringer IP, Weiner MA, et al. Severe osteoporosis before and after lung transplantation. Chest. 1996;109:1176–83.

    Article  CAS  PubMed  Google Scholar 

  92. Aris RM, Lester GE, Renner JB, et al. Efficacy of pamidronate for osteoporosis in patients with cystic fibrosis following lung transplantation. Am J Respir Crit Care Med. 2000;162:941–6.

    Article  CAS  PubMed  Google Scholar 

  93. Hubert G, Chung TT, Prosser C, et al. Bone mineral density and fat-soluble vitamin status in adults with cystic fibrosis undergoing lung transplantation: a pilot study. Can J Diet Pract Res. 2016;77:199–202.

    Article  PubMed  Google Scholar 

  94. Conwell LS, Chang AB. Bisphosphonates for osteoporosis in people with cystic fibrosis. Cochrane Database Syst Rev. 2014; CD002010.

    Google Scholar 

  95. Haworth CS, Selby PL, Adams JE, et al. Effect of intravenous pamidronate on bone mineral density in adults with cystic fibrosis. Thorax. 2001;56:314–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Land C, Rauch F, Glorieux FH. Cyclical intravenous pamidronate treatment affects metaphyseal modeling in growing patients with osteogenesis imperfecta. J Bone Miner Res. 2006;21(3):374–9. Proposed additional reference.

    Article  CAS  PubMed  Google Scholar 

  97. Cummings SR, San Martin J, McClung MR, et al. Denosumab for prevention of fractures in postmenopausal women with osteoporosis. N Engl J Med. 2009;361:756–65.

    Article  CAS  PubMed  Google Scholar 

  98. Neer RM, Arnaud CD, Zanchetta JR, et al. Effect of parathyroid hormone (1-34) on fractures and bone mineral density in postmenopausal women with osteoporosis. N Engl J Med. 2001;344:1434–41.

    Article  CAS  PubMed  Google Scholar 

  99. Siwamogsatham O, Stephens K, Tangpricha V. Evaluation of teriparatide for treatment of osteoporosis in four patients with cystic fibrosis: a case series. Case Rep Endocrinol. 2014;2014:893589.

    PubMed  PubMed Central  Google Scholar 

  100. Dif F, Marty C, Baudoin C, et al. Severe osteopenia in CFTR-null mice. Bone. 2004;35:595–603.

    Article  CAS  PubMed  Google Scholar 

  101. Haston CK, Li W, Li A, et al. Persistent osteopenia in adult cystic fibrosis transmembrane conductance regulator-deficient mice. Am J Respir Crit Care Med. 2008;177:309–15.

    Article  PubMed  Google Scholar 

  102. Pashuck TD, Franz SE, Altman MK, et al. Murine model for cystic fibrosis bone disease demonstrates osteopenia and sex-related differences in bone formation. Pediatr Res. 2009;65:311–6.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Le Henaff C, Haÿ E, Velard F, et al. Enhanced F508del-CFTR channel activity ameliorates bone pathology in murine cystic fibrosis. Am J Pathol. 2014;184:1132–41.

    Article  PubMed  CAS  Google Scholar 

  104. Stalvey MS, Havasi V, Tuggle KL, et al. Reduced bone length, growth plate thickness, bone content, and IGF-I as a model for poor growth in the CFTR-deficient rat. PLoS One. 2017;12:e0188497.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Le Henaff C, Faria Da Cunha M, Hatton A, et al. Genetic deletion of keratin 8 corrects the altered bone formation and osteopenia in a mouse model of cystic fibrosis. Hum Mol Genet. 2016;25:1281–93.

    Article  PubMed  CAS  Google Scholar 

  106. Le Henaff C, Mansouri R, Modrowski D, et al. Increased NF-κB activity and decreased Wnt/β-catenin signaling mediate reduced osteoblast differentiation and function in ΔF508 cystic fibrosis transmembrane conductance regulator (CFTR) mice. J Biol Chem. 2015;290:18009–17.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Shead EF, Haworth CS, Condliffe AM, et al. Cystic fibrosis transmembrane conductance regulator (CFTR) is expressed in human bone. Thorax. 2007;62:650–1.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Delion M, Braux J, Jourdain M-L, et al. Overexpression of RANKL in osteoblasts: a possible mechanism of susceptibility to bone disease in cystic fibrosis. J Pathol. 2016;240:50–60.

    Article  CAS  PubMed  Google Scholar 

  109. Sermet-Gaudelus I, Delion M, Durieu I, et al. Bone demineralization is improved by ivacaftor in patients with cystic fibrosis carrying the p.Gly551Asp mutation. J Cyst Fibros. 2016;15:e67–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabelle Sermet-Gaudelus .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Guérin, S., Durieu, I., Sermet-Gaudelus, I. (2020). Cystic Fibrosis-Related Bone Disease: Current Knowledge and Future Directions. In: Davis, S., Rosenfeld, M., Chmiel, J. (eds) Cystic Fibrosis. Respiratory Medicine. Humana, Cham. https://doi.org/10.1007/978-3-030-42382-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-42382-7_17

  • Published:

  • Publisher Name: Humana, Cham

  • Print ISBN: 978-3-030-42381-0

  • Online ISBN: 978-3-030-42382-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics