Skip to main content
Log in

Direct and Indirect Pathogenicity of Branhamella catarrhalis

  • Section 3: Therapeutic Aspects: Part 1
  • Published:
Drugs Aims and scope Submit manuscript

Summary

Branhamella catarrhalis has been recovered from various sites of infection in the respiratory tract. These include chronic otitis media, tonsillitis, adenoiditis and pneumonia. This organism was recovered in many of these infections mixed with other aerobic, facultative anaerobic and anaerobic bacteria. Increasing numbers of isolates of this organism have been noted to produce β-lactamase. This may contribute to the high failure rate of penicillins in eradicating polymicrobial respiratory infections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Boughton WH. Rapid detection in spinal fluid of beta-lactamase produced by ampicillin-resistant Haemophilus influenzae. Journal of Clinical Microbiology 15: 1167–1168, 1982

    PubMed  CAS  Google Scholar 

  • Brook I. Bacterial colonization trachitis and pneumonia, following tracheostomy and long-term intubation in pediatric patients. Chest 70: 420–424, 1979

    Article  Google Scholar 

  • Brook I. Percutaneous transtracheal aspiration in the diagnosis of pulmonary infection in children. Journal of Pediatrics 96: 1000–1004, 1980

    Article  PubMed  CAS  Google Scholar 

  • Brook I. Bacteriology of paronychia in children. American Journal of Surgery 141: 703–705, 1981

    Article  PubMed  CAS  Google Scholar 

  • Brook I. Microbiological studies of the bacterial flora of the external auditory canal in children. Acta Oto-Laryngologica 91: 285–287, 1981a

    Article  PubMed  CAS  Google Scholar 

  • Brook I. Aerobic and anaerobic bacteriology of adenoids in children: A comparison between patients with chronic adenotonsillitis and adenoid hypertrophy. Laryngoscope 91: 377–382, 1981b

    PubMed  CAS  Google Scholar 

  • Brook I. Bacteriology of paronychia in children. American Journal of Surgery 141: 703–705, 1981c

    Article  PubMed  CAS  Google Scholar 

  • Brook I. Beta-lactamase-producing bacteria recovered after clinical failures with various penicillin therapy. Archives of Otolaryngology 110: 228–231, 1984a

    Article  PubMed  CAS  Google Scholar 

  • Brook I. The role of beta-lactamase-producing bacteria in the persistence of streptococcal tonsillar infection. Reviews of Infectious Diseases 6: 601–607, 1984b

    Article  PubMed  CAS  Google Scholar 

  • Brook I. Role of beta-lactamase-producing bacteria in penicillin failure to eradicate group A streptococci. Pediatric Infectious Disease 4: 491–495, 1985a

    Article  PubMed  CAS  Google Scholar 

  • Brook I. Prevalence of beta-lactamase-producing bacteria in chronic suppurative otitis media. American Journal of Diseases of Children 139: 280–283, 1985b

    PubMed  CAS  Google Scholar 

  • Brook I. Microbiology of human and animal bites. Submitted for publication, 1986a

    Google Scholar 

  • Brook I. Presence of beta-lactamase producing bacteria, and beta-lactamase activity in abscesses. American Journal of Clinical Pathology, in press, 1986b

    Google Scholar 

  • Brook I, Gober AE. Bacteroides melaninogenicus, it’s recovery from tonsils of children with acute tonsillitis. Archives of Oto-laryngology 109: 818–820, 1983

    CAS  Google Scholar 

  • Brook I, Gober AE. Emergence of beta-lactamase-producing aerobic and anaerobic bacteria in the oropharynx of children following penicillin chemotherapy. Clinical Pediatrics 23: 338–341, 1984

    Article  PubMed  CAS  Google Scholar 

  • Brook I, Hirokawa R. Treatment of patients with a history of recurrent tonsillitis due to group A beta-hemolytic streptococci. Clinical Pediatrics 24: 331–336, 1985

    Article  PubMed  CAS  Google Scholar 

  • Brook I, Pazzaglia G, Coolbaugh JC, Walker RI. In vitro protection of group A beta-hemolytic streptococci by beta-lactamase producing Bacteroides species. Journal of Antimicrobial Agents and Chemotherapy 29: 18–23, 1983

    CAS  Google Scholar 

  • Brook I, Pettit TH, Martin WJ, Finegold SM. Aerobic and anaerobic bacteriology of acute conjunctivitis. Annals of Ophthalmology 11: 13–16, 1978

    Google Scholar 

  • Brook I, Walker RI. Infectivity of organisms recovered from polymicrobial abscesses. Infection and Immunity 42: 986–989, 1983

    PubMed  CAS  Google Scholar 

  • Brook I, Yocum P. In vitro protection of group A beta-hemolytic streptococci from penicillin and cephalothin by Bacteroides fragilis. Chemotherapy 29: 18–23, 1983

    Article  PubMed  CAS  Google Scholar 

  • Brook I, Yocum P. Bacteriology of chronic tonsillitis in young adults. Archives of Otolaryngology 110: 803–805, 1984a

    Article  PubMed  CAS  Google Scholar 

  • Brook I, Yocum P. Quantitative measurement of beta-lactamase levels in tonsils of children with recurrent tonsillitis, Acta Oto-Laryngologica Scandinavica 98: 446–460, 1984b

    Google Scholar 

  • Brook I, Yocum P, Friedman EM. Aerobic and anaerobic flora recovered from tonsils of children with recurrent tonsillitis. Annals of Otology, Rhinology and Laryngology 90: 261–263, 1981

    CAS  Google Scholar 

  • Brorson JE, Axelsson A, Holm S. Studies on Branhamella catarrhalis with special reference to maxillary sinusitis. Scandinavian Journal of Infectious Diseases 5: 151–155, 1976

    Google Scholar 

  • Bryant RE, Rashad AL, Mazza JA, Hammond D. Beta-lactamase activity in human pus. Journal of Infectious Diseases 142: 594–601, 1980

    Article  PubMed  CAS  Google Scholar 

  • Catlin BW. Transfer of organism named Neisseria catarrhalis to Branhamella genus. International Journal of Systematic Bacteriology 20: 155–159, 1970

    Article  Google Scholar 

  • Coffey JD. Otitis media in the practice of pediatrics. Pediatrics 38: 25–32, 1966

    PubMed  Google Scholar 

  • de Louvois J, Hurley R. Inactivation of penicillin by purulent exudates. British Medical Journal 2: 998–1000, 1977

    Article  Google Scholar 

  • Gastanaduy AS, Kaplan EL, Huwe BB, McKay C, Wannamaker LW. Failure of penicillin to eradicate group A streptococci during an outbreak of pharyngitis. Lancet 2: 498–502, 1980

    Article  PubMed  CAS  Google Scholar 

  • Hackman AS, Wilkins TD. In vivo protection of Fusobacterium necrophorum from penicillin by Bacteroides fragilis. Antimicrobial Agents and Chemotherapy 7: 698–703, 1975

    Article  PubMed  CAS  Google Scholar 

  • Heimdahl A, Von Konow L, Nord CE. Isolations of beta-lacta-mase-producing Bacteroides strains associated with clinical failures with penicillin treatment of human orofacial infections. Archives of Oral Biology 25: 268–692, 1980

    Article  Google Scholar 

  • Ingham HR, Tharagonnet D, Sisson PR, Selkon JB, Codd AA. Inhibition of phagocytosis in vitro by obligate anaerobes. Lancet 1: 252–254, 1977

    Google Scholar 

  • Kamme C. Evaluation of the in vitro sensitivity of Neisseria catarrhalis to antibiotics with respect to acute otitis media. Scandinavian Journal of Infectious Diseases 2: 117–120, 1970

    PubMed  CAS  Google Scholar 

  • Kovatch AL, Wald ER, Michaels RH. Beta lactamase-producing Branhamella catarrhalis causing otitis media in children. Journal of Pediatrics 102: 260–263, 1983

    Google Scholar 

  • Knudsin RB, Miller JM. Significance of the Staphylococcus aureus carrier state in the treatment of disease due to group A streptococci. New England Journal of Medicine 271: 1395–1397, 1964

    Article  Google Scholar 

  • Lev M, Kurdell KC, Milford AF. Succinate as a growth factor for Bacteroides melaninogenicus. Journal of Bacteriology 108: 175–178, 1971

    PubMed  CAS  Google Scholar 

  • Masuda G, Tomioka S. Possible beta-lactamase activities detectable in infective clinical specimens. Journal of Antibiotics 30: 1093–1097, 1977

    Article  PubMed  CAS  Google Scholar 

  • McNeely DJ, Kitchens CS, Kluge RM. Fatal Neisseria Branhamella catarrhalis pneumonia in an immunodeficient host. American Review of Respiratory Diseases 114: 399–402, 1976

    CAS  Google Scholar 

  • Mergenhagen SE, Thonard JC, Scherp HW. Studies on synergistic infections. I Experimental infections with anaerobic streptococci. Journal of Infectious Diseases 103: 33–44, 1958

    Article  PubMed  CAS  Google Scholar 

  • Ninane G, Joly J, Piot P, Kraytman M. Branhamella (Neisseria) catarrhalis as a pathogen. Lancet 2: 149, 1977

    Article  PubMed  CAS  Google Scholar 

  • O’Keefe JP, Tally FP, Barza M, Gorbach SL. Inactivation of penicillin G during experimental infection with Bacteroides fragilis. Journal of Infectious Diseases 137: 437–442, 1978

    Article  PubMed  Google Scholar 

  • Okuda K, Takozoe I. Antiphagocytic effects of the capsular structure of a pathogenic strain of Bacteroides melaninogenicus. Bulletin of the Tokyo Dental College 14: 99–104, 1973

    CAS  Google Scholar 

  • Orsini A, Tamalet J, Chanas P. Septicema moretelle a Neisseria catarrhalis. Semaine des Hôpitaux 62: 3498–3499, 1954

    Google Scholar 

  • Pollock AA, Holzman RS. Neisseria catarrhalis endocarditis. Annals of Internal Medicine 85: 206–207, 1976

    PubMed  CAS  Google Scholar 

  • Quie PG, Pierce AX, Wannamaker LW. Influence of penicillinase producing staphylococci on the eradication of group A streptococci from the upper respiratory tract by penicillin treatment. Pediatrics 37: 467–476, 1966

    PubMed  CAS  Google Scholar 

  • Reilly S, Imms P, Beeden AG, Willis AT. Possible role of the anaerobes in tonsillitis. Journal of Clinical Pathology 34: 542–547, 1981

    Article  PubMed  CAS  Google Scholar 

  • Roseburg T. Microorganisms indigenous to man. McGraw-Hill, New York, 1962

    Google Scholar 

  • Scheifele DW, Fussell SJ. Frequency of ampicillin resistant Haemophilus parainfluenzae in children. Journal of Infectious Diseases 143: 495–498, 1981

    Article  PubMed  CAS  Google Scholar 

  • Simon HM, Sukair W. Staphylococcal antagonism to penicillin group therapy of hemolytic streptococcal pharyngeal infection: effect of oxacillin. Pediatrics 31: 463–469, 1963

    PubMed  CAS  Google Scholar 

  • Srinivasan G, Rale MJ, Templeton WC, Givens SJ, Graves RC et al. Branhamella catarrhalis pneumonia. American Review of Respiratory Diseases 123: 553–588, 1981

    CAS  Google Scholar 

  • Swartz MN, Dodge PR. Bacterial meningitides. A review of selected aspects. New England Journal of Medicine 272: 725–731, 842–848, 898–902, 1003–1010, 1965

    Article  PubMed  CAS  Google Scholar 

  • Tunér K, Nord CE. Beta lactamase-producing micro-organisms in recurrent tonsillitis. Scandinavian Journal of Infectious Diseases (Suppl. 39): 83–85, 1983

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brook, I. Direct and Indirect Pathogenicity of Branhamella catarrhalis . Drugs 31 (Suppl 3), 97–102 (1986). https://doi.org/10.2165/00003495-198600313-00021

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003495-198600313-00021

Keywords

Navigation