Skip to main content
Log in

Pharmacokinetic Optimisation of Tricyclic Antidepressant Therapy

  • Review Article
  • Pharmacokinetics-Therapeutics
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Summary

Pharmacokinetics has greatly contributed to the elucidation of the variability in clinical response to antidepressants in terms of differences in plasma concentrations due to genetic constitution, age, associated diseases and drug interactions. Despite no general agreement, therapeutic and toxic concentrations have been suggested for some tricyclic antidepressants (TCAs) [ami-triptyline, nortriptyline, imipramine, desipramine]. Predictive techniques may be implemented on the basis of which starting TCA dosages may be selected to reach more rapidly those concentrations at which efficacy is more probable. Therapeutic drug monitoring may thereafter assist the clinician in refining the individualisation of the dosage regimen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abernethy DR, Divoli M, Greenblatt DJ, Harmatz JS, Shader RI. Absolute bioavailability of imipramine: influence of food. Psychopharmacology 83: 104–106, 1984b

    Article  Google Scholar 

  • Abernethy DR, Greenblatt DJ, Shader RI. Imipramine disposition in users of oral contraceptives steroids. Clinical Pharmacology and Therapeutics 35: 792–797, 1984c

    Article  PubMed  CAS  Google Scholar 

  • Abernethy DR, Greenblatt DJ, Shader R. Imipramine-cimetidine interaction: impairment of clearance and enhanced absolute bioavailability. Journal of Pharmacology and Experimental Therapeutics 229: 702–705, 1984a

    PubMed  CAS  Google Scholar 

  • Abernethy DR, Greenblat DJ, Shader R. Imipramine and desipramine disposition in the elderly. Journal of Pharmacology and Experimental Therapeutics 232: 183–188, 1985

    PubMed  CAS  Google Scholar 

  • Abernethy DR, Kerzner L. Age effects on alpha-1-acid glycoprotein concentration and imipramine plasma protein binding. Journal of the American Geriatrics Society 32: 705–708, 1984

    PubMed  CAS  Google Scholar 

  • Abernethy DR, Todd EL. Doxepin-cimetidine interaction: increased bioavailability during cimetidine treatment. Journal of Clinical Psychopharmacology 6: 8–12, 1986

    Article  PubMed  CAS  Google Scholar 

  • Alexanderson B, Borgä O. Urinary excretion of nortriptyline and five of its metabolites in man after single and multiple oral doses. European Journal of Clinical Pharmacology 5: 174–180, 1973

    Article  CAS  Google Scholar 

  • Alexanderson B, Evans DAP, Sjöqvist F. Steady-state plasma levels of nortryptiline in twins: influence of genetic factors and drug therapy. British Medical Journal 4: 764–768, 1969

    Article  PubMed  CAS  Google Scholar 

  • Alvan G, Bechtel P, Iselius L, Gundert-Remy U. Hydroxylation polymorphisms of debrisoquine and mephenytoin in European populations. European Journal of Clinical Pharmacology 39: 533–538, 1990

    Article  PubMed  CAS  Google Scholar 

  • Amsterdam JD, Brunswick DJ, Potter L, Kaplan MJ. Cimetidine-induced alterations in desipramine plasma concentrations. Psychopharmacology 83: 373–375, 1984

    Article  PubMed  CAS  Google Scholar 

  • Amsterdam JD, Brunswick DJ, Potter L, Winokur A, Rickels K. Desipramine and 2-hidroxydesipramine plasma levels in endogenous depressed patients: lack of correlation with therapeutic response. Archives of General Psychiatry 42: 361–364, 1985

    Article  PubMed  CAS  Google Scholar 

  • Ankier SI, Martin BK, Rogers MS, Carpenter PK, Graham C. Trazodone: a new assay procedure and some pharmacokinetic parameters. British Journal of Clinical Pharmacology 11: 505–509, 1981

    Article  PubMed  CAS  Google Scholar 

  • Antal EJ, Lawson LM, Chapron DJ, Kramer PA. Estimating steady state desipramine levels in noninstitutionalized elderly patients using single dose disposition parameters. Journal of Clinical Psychopharmacology 2: 193–198, 1982

    Article  PubMed  CAS  Google Scholar 

  • Aranow RB, Hudson JI, Pope HG, Grady TA, Laage TA, et al. Elevated antidepressant plasma levels after addition of fluoxetine. American Journal of Psychiatry 146: 911–913, 1989

    PubMed  CAS  Google Scholar 

  • Asberg M, Cronholm B, Sjöqvist F, Tuck D. Relationship between plasma level and therapeutic effect of nortriptyline. British Medical Journal 3: 331–334, 1971

    Article  PubMed  CAS  Google Scholar 

  • Ayesh R, Dawling S, Widdop B, Idle JR, Smith RL. Influence of quinidine on the pharmacokinetics of nortriptyline and desipramine. British Journal of Clinical Pharmacology 25: 140–141, 1988

    Google Scholar 

  • Balant-Gorgia AE, Balant LP, Genet C, Dayer P, Aeschlimann JM. Importance of oxidative polymorphism and levomepromazine treatment on steady-state blood concentrations of clomipramine and its major metabolites. European Journal of Clinical Pharmacology 31: 449–455, 1986

    Article  PubMed  CAS  Google Scholar 

  • Balant-Gorgia AE, Gay M, Gex-Fabry M, Balant LP. Persistent impairment of clomipramine demethylation in recently detoxified alcoholic patients. Therapeutic Drug Monitoring 14: 119–124, 1992

    Article  PubMed  CAS  Google Scholar 

  • Balant-Gorgia AE, Schulz P, Dayer P, Balant L, Kubli A, et al. Role of oxidation polymorphism on blood and urine concentrations of amitriptyline and its metabolites in man. Archiv für Psychiatrie und Nervenkrankheiten 232: 215–222, 1982

    Article  PubMed  CAS  Google Scholar 

  • Baumann P, Gaillard JM, Jonzier-Perey M, Gerber C, Bouras C. Evaluation of the levels of free and total amitriptyline and metabolites in the plasma and brain of the rat after long-term administration of doses used in receptor studies. Psychopharmacology 84: 489–495, 1984

    Article  PubMed  CAS  Google Scholar 

  • Benetello P, Furlanut M, Zara G, Baraldo M. Imipramine pharmacokinetics in depressed geriatric patients. International Journal of Clinical Pharmacology Research 10: 191–195, 1990

    PubMed  CAS  Google Scholar 

  • Bertilsson L, Aberg-Wistedt A. The debrisoquine hydroxylation test predicts steady-state plasma levels of desipramine. British Journal of Clinical Pharmacology 15: 388–390, 1983

    Article  PubMed  CAS  Google Scholar 

  • Bertilsson L, Braithwaite R, Tybring G, Garle M, Borgä O. Techniques for plasma protein binding of desmethylchlorimipramine. Clinical Pharmacology and Therapeutics 26: 265–271, 1979

    PubMed  CAS  Google Scholar 

  • Bertschy G, Vandel S, Vandel B, Allers G, Bechtel P, et al. Desipramine dose prediction based on 24-hour single-dose levels: feasibility and validity. Pharmacopsychiatry 22: 161–164, 1989

    Article  PubMed  CAS  Google Scholar 

  • Bickel MH. Binding of chlorpromazine and imipramine to red cells, albumin, lipoproteins and other blood components. Journal of Pharmacy and Pharmacology 27: 733–738, 1975

    Article  PubMed  CAS  Google Scholar 

  • Biederman J, Beldessarini RJ, Wright V, Knee D, Harmatz JS, et al. A double-blind placebo controlled study of desipramine in the treatment of ADD: II. Serum drug levels and cardiovascular findings. Journal of the American Academy of Child and Adolescent Psychiatry 28: 903–911, 1989

    Article  PubMed  CAS  Google Scholar 

  • Biggs JT, Ziegler VE. Protriptyline plasma levels and antidepressant response. Clinical Pharmacology and Therapeutics 22: 269–273, 1977

    PubMed  CAS  Google Scholar 

  • Bjerre M, Gram IF, Krag-Sörensen P, Kristensen CB, Pedersen OL, et al. Dose dependent kinetics of imipramine in elderly patients. Psychopharmacology 75: 354–357, 1981

    Article  PubMed  CAS  Google Scholar 

  • Boehnert MT, Lovejoy FH. Value of the QRS duration versus the serum drug level in predicting seizures and ventricular arrhythmias after an acute overdose of tricyclic antidepressants. New England Journal of Medicine 313: 474–479, 1985

    Article  PubMed  CAS  Google Scholar 

  • Borga GA, Lind M, Palmer L, Siwers B. First pass hydroxylation of nortriptyline: concentration of parent drug and major metabolites in plasma. European Journal of Clinical Pharmacology 11: 219–224, 1977

    Article  PubMed  Google Scholar 

  • Borgä O, Azarnoff DL, Forshell GP, Sjöqvist F. Plasma protein binding of tricyclic antidepressants in man. Biochemical Pharmacology 18: 2135–2143, 1969

    Article  PubMed  Google Scholar 

  • Braithwaite RA, Goulding R, Theano G, Bailey J, Coppen A. Plasma concentration of amitriptyline and clinical response. Lancet 1: 1297–1300, 1972

    Article  PubMed  CAS  Google Scholar 

  • Braithwaite R, Montgomery S, Dawling S. Nortriptyline in depressed patients with high plasma levels II. Clinical Pharmacology and Therapeutics 23: 303–308, 1978

    PubMed  CAS  Google Scholar 

  • Breyer-Pfaff U, Gaertner HJ, Kreuter F, Scharek G, Brinkschulte M, et al. Antidepressive effect and pharmacokinetics of amitriptyline with consideration of unbound drug and 10-hydroxynortriptyline plasma levels. Psychopharmacology 76: 240–244, 1982

    Article  PubMed  CAS  Google Scholar 

  • Brinkschulte M, Breyer-Pfaff U. The contribution of α1-acid glycoprotein, lipoproteins and albumin to the plasma binding of perazine, amitriptyline and nortriptyline in healthy man. Naunyn-Schmiedeberg’s Archives of Pharmacology 314: 61–66, 1980

    Article  PubMed  CAS  Google Scholar 

  • Broadhurst AD, James HD, Della Corte L, Heeley AF. Clomipramine plasma level and clinical response. Postgraduate Medical Journal 53: 139–145, 1977

    Article  PubMed  Google Scholar 

  • Brösen K, Gram LF. Clinical significance of the sparteine/debrisoquine oxidation polymorphism. European Journal of Clinical Pharmacology 36: 537–547, 1989

    Article  PubMed  Google Scholar 

  • Brösen K, Gram LF, Klysner R, Bech P. Steady-state levels of imipramine and its metabolites: significance of dose-dependent kinetics. European Journal of Clinical Pharmacology 30: 43–49, 1986b

    Article  PubMed  Google Scholar 

  • Brösen K, Otton V, Gram LF. Imipramine demethylation and hydroxylation: impact of the sparteine oxidation phenotype. Clinical Pharmacology and Therapeutics 40: 543–549, 1986a

    Article  PubMed  Google Scholar 

  • Brown CS, Wells BG, Self TH, Jabbour JT. Influence of carbamazepine on plasma imipramine concentration in children with attention-deficit hyperactivity disorder. Pharmacotherapy 8: 135, 1988

    Google Scholar 

  • Brunswick DJ, Amsterdam JD, Potter L, Caroff S, Rickels K. Relationship between tricyclic antidepressant plasma levels and clinical response in patients treated with desipramine or doxepin. Acta Psychiatrica Scandinavica 67: 371–377, 1983

    Article  PubMed  CAS  Google Scholar 

  • Brunswick DJ, Amsterdam J, Schless A, Rothbart M, Sandler K, et al. Prediction of steady-state plasma levels of amitriptyline and nortriptyline from a single dose 24h level in depressed patients. Journal of Clinical Psychiatry 41: 330–340, 1980

    Google Scholar 

  • Burch JE, Hullin RP. Amitriptyline pharmacokinetics. Single doses of Lentizol compared with ordinary amitriptyline tablets. Psycopharmacology 74: 35–42, 1981

    Article  CAS  Google Scholar 

  • Burkitt EA, Sutcliffe CK. Paralytic ileus after amitriptyline (Tryptizol). British Medical Journal 2: 1648–1649, 1961

    Article  Google Scholar 

  • Burrows GD, Davies B, Scoggins BA. Plasma concentration of nortriptyline and clinical response in depressive illness. Lancet 2: 619–623, 1972

    Article  PubMed  CAS  Google Scholar 

  • Campbell M, Spencer EK. Psychopharmacology in child and adolescent psychiatry: a review of the past five years. Journal of the American Academy of Child and Adolescent Psychiatry 3: 269–279, 1988

    Article  Google Scholar 

  • Checkley SA, Slade AP, Shur E, Dawling S. A pilot study on the mechanism of action of desipramine. British Journal of Psychology 138: 248–251, 1981

    Article  CAS  Google Scholar 

  • Chutka D. Cardiovascular effects of the antidepressants: recognition and control. Geriatrics 45: 55–67, 1990

    PubMed  CAS  Google Scholar 

  • Ciraulo DA, Barnhill JG, Jaffe JH. Clinical pharmacokinetics of imipramine and desipramine in alcoholics and normal volunteers. Clinical Pharmacology and Therapeutics 43: 509–518, 1988

    Article  PubMed  CAS  Google Scholar 

  • Clark AM, Clinton RT, Baker JK, Hufford CD. Demethylation of imipramine by enteric bacteria. Journal of Pharmaceutical Sciences 72: 1288–1290, 1983

    Article  PubMed  CAS  Google Scholar 

  • Click MA, Zisook S. Amoxapine and amitriptyline: serum levels and clinical response in patients with primary unipolar depression. Journal of Clinical Psychiatry 43: 369–371, 1982

    PubMed  Google Scholar 

  • Cooke RG, Warsh JJ, Staneer HC, Reed KL, Persad E. The non linear kinetics of desipramine and 2-hydroxydesipramine in plasma. Clinical Pharmacology and Therapeutics 36: 343–349, 1984

    Article  PubMed  CAS  Google Scholar 

  • Cooper TB, Bark N, Simpson GM. Prediction of steady-state plasma and saliva levels of desmethylimipramine using a single dose, single time point procedure. Psychopharmacology 74: 115–121, 1981

    Article  PubMed  CAS  Google Scholar 

  • Coppen A, Ghose K, Montgomery S, Rama Rao VA, Bailey J. Amitriptyline plasma-concentration and clinical effect: a World Health Organization collaborative study. Lancet 1: 63–66, 1978

    Article  PubMed  CAS  Google Scholar 

  • Corona GL, Cucchi ML, Frattini P, Santagostino G, Schinelli S, et al. Aspects of amitriptyline and nortriptyline plasma levels monitoring in depression. Psychopharmacology 100: 334–338, 1990

    Article  PubMed  CAS  Google Scholar 

  • Corona GL, Zerbi F, Pinelli P, Fenoglio L, Frattini P, et al. Amitriptyline and nortriptyline plasma levels monitoring: perspective in clinical practice. Communications in Psychopharmacology 4: 309–316, 1980

    PubMed  CAS  Google Scholar 

  • Coryell W, Turner RD, Sherman A. Desipramine plasma levels and clinical response: evidence for a curvilinear relationship. Journal of Clinical Psychopharmacology 7: 138–142, 1987

    Article  PubMed  CAS  Google Scholar 

  • Costa D, Predescu V, Visan-Ionescu I, Ciurezu T. Endogenous depression and imipramine levels in the blood. Psychopharmacology 70: 291–294, 1980

    Article  PubMed  CAS  Google Scholar 

  • Curry SH, De Vane CL, Wolfe MM. Cimetidine interaction with amitriptyline. European Journal of Clinical Pharmacology 29: 429–433, 1985

    Article  PubMed  CAS  Google Scholar 

  • Danon A, Chen Z. Binding of imipramine to plasma proteins: effect of hyperlipoproteinemia. Clinical Pharmacology and Therapeutics 25: 316–321, 1979

    PubMed  CAS  Google Scholar 

  • Dawling S, Crome P, Braithwaite RA, Lewis RR. Nortriptyline therapy in elderly patients: dosage prediction after single dose pharmacokinetic study. European Journal of Clinical Pharmacology 18: 147–150, 1980

    Article  PubMed  CAS  Google Scholar 

  • Dawling S, Lynn KL, Rosser R, Braithwaite R. Nortriptyline metabolism in chronic renal failure: metabolite elimination. Clinical Pharmacology and Therapeutics 32: 322–329, 1982

    Article  PubMed  CAS  Google Scholar 

  • De Cuyper HJA, van Praag HM, Mulder-Hajonides WREM, Westernberg HGM, Zeew RA. Pharmacokinetics of clomipramine in depressive patients. Psychiatry Research 4: 147–156, 1981

    Article  PubMed  Google Scholar 

  • De Jongh GD, van den Wildenberg HM, Nieuwenhuyse H, van der Veen F. The metabolism of mianserin in women, rabbits and rats: identification of the major urinary metabolites. Drug Metabolism and Disposition 9: 48–53, 1981

    PubMed  Google Scholar 

  • Della Corte L, Broadhurst AD, Sgaragli GP, Filippini S, Heeley AF, et al. Clinical response and tricyclic plasma levels during treatment with clomipramine. British Journal of Psychiatry 134: 390–400, 1979

    Article  PubMed  Google Scholar 

  • Dell RB, Hein K, Romakrishnan R, Puig-Antich J, Cooper T. Model for kinetics of imipramine and its metabolites in adolescents. Therapeutic Drug Monitoring 12: 450–459, 1990

    Article  PubMed  CAS  Google Scholar 

  • Devane CL. Cyclic antidepressants. In Evans et al. (Eds) Applied pharmacokinetics: principles of therapeutic drug monitoring, pp. 852–907, Applied Therapeutics, Spokane, 1986

    Google Scholar 

  • Devane CL, Savett M, Jusko WJ. Desipramine and 2-hydroxydesipramine pharmacokinetics in normal volunteers. European Journal of Clinical Pharmacology 19: 61–64, 1981

    Article  PubMed  CAS  Google Scholar 

  • Devane CL, Simpkins JW, Stout SA. Cerebral and blood pharmacokinetics of imipramine and its active metabolites in the pregnant rat. Psychopharmacology 84: 225–230, 1984b

    Article  PubMed  CAS  Google Scholar 

  • Devane CL, Walker RD, Sawyer W, Wilson JA. Concentrations of imipramine and its metabolites during enuresis therapy. Pediatric Pharmacology 4: 245–251, 1984a

    PubMed  CAS  Google Scholar 

  • Dietch J, Fine M. The effect of nortriptyline in elderly patients with cardiac conduction disease. Journal of Clinical Psychiatry 51: 65–67, 1990

    PubMed  CAS  Google Scholar 

  • Donnely M, Zametkin AJ, Rapoport J, Ismond DR, Weingartner H, et al. Treatment of childhood hyperactivity with desipramine: plasma drug concentration, cardiovascular effects, plasma and urinary catecholamine levels, and clinical response. Clinical Pharmacology and Therapeutics 39: 72–81, 1986

    Article  Google Scholar 

  • Dorian P, Sellers EM, Reed KL, Warsh JJ, Hamilton C, et al. Amitriptyline and ethanol: pharmacokinetic and pharmacodynamic interaction. European Journal of Clinical Pharmacology 25: 325–331, 1983

    Article  PubMed  CAS  Google Scholar 

  • Eichelbaum M, Gross AS. The genetic polymorphism of debri-soquine/sparteine metabolism: clinical aspects. Pharmacology and Therapeutics 46: 377–394, 1990

    Article  PubMed  CAS  Google Scholar 

  • Eichelbaum M, Spannbrucker N, Steincke B, Dengler HJ. Defective N-oxidation of sparteine in man: a new pharmacogenetic defect. European Journal of Clinical Pharmacology 16: 183–187, 1979

    Article  PubMed  CAS  Google Scholar 

  • Evans DAP, Mahgoub A, Sloan TP, Idle JR, Smith RL. A family and population study of genetic polymorphism of debrisoquine oxidation in a white British population. Journal of Medical Genetics 17: 102–105, 1980a

    Article  PubMed  CAS  Google Scholar 

  • Evans LEJ, Bett JH, Cox JR, Dubois JP, van Hees T. The bioavailability of oral and parenteral chlorimipramine (Anafranil). Progress in Neuro-Psychopharmacology 4: 293–302, 1980

    Article  PubMed  CAS  Google Scholar 

  • Fernandez de Gatta MF, Garcia MJ, Acosta A, Rey F, Gutierrez JR, et al. Monitoring of serum levels of imipramine and desipramine and individualization of dose in enuretic children. Therapeutic Drug Monitoring 6: 438–443, 1984

    Article  Google Scholar 

  • Freilich DI, Giardina EV. Imipramine binding to α1-acid glycoprotein in normal subjects and in cardiac patients. Clinical Pharmacology and Therapeutics 35: 670–674, 1984

    Article  PubMed  CAS  Google Scholar 

  • Friedman E, Cooper TB. Pharmacokinetics of chlorimipramine and its demethylated metabolite in blood and brain regions of rats treated acutely and chronically with chlorimipramine. Journal of Pharmacology and Experimental Therapeutics 225: 387–390, 1983

    PubMed  CAS  Google Scholar 

  • Furlanut M, Montanari G, Benetello P, Bonin P, Schiaulini P et al. Steady-state serum concentrations of imipramine, its main metabolites and clinical response in primary enuresis. Pharmacological Research 21: 561–566, 1989

    Article  PubMed  CAS  Google Scholar 

  • Garland WA, Muccino RR, Min BH, Cupano J, Fann WE. A method for the determination of amitriptyline and its metabolites nortriptyline, 10-hydroxyamitriptyline and 10-hydroxynortriptyline in human plasma using stable isotope dilution and gas chromatography-chemical ionization mass spectrometry (GC-CISM). Clinical Pharmacology and Therapeutics 25: 845–856, 1979

    Google Scholar 

  • Gelenberg A. Predicting treatment response in clinical psychopharmacology. Psychopharmacology Bulletin 26: 345–348, 1990

    Google Scholar 

  • Geller B, Perel JM, Knitter EF, Lycaki H, Farooki ZQ. Nortriptyline in major depressive disorder in children: response, steady-state plasma levels, predictive kinetics and pharmacokinetics. Psycopharmacology Bulletin 19: 62–64, 1983

    Google Scholar 

  • Glassman AH, Hurwic MJ, Perel JM. Plasma binding of imipramine and clinical outcome. American Journal of Psychiatry 130: 1367–1369, 1973

    PubMed  CAS  Google Scholar 

  • Glassman AH, Perel JM, Shostak M, Kantor SJ, Fleiss JL. Clinical implications of imipramine plasma levels for depressive illness. Archives of General Psychiatry 34: 197–204, 1977

    Article  PubMed  CAS  Google Scholar 

  • Glassman AH, Roose SP. Cardiovascular effects of tricyclic antidepressants. Psychiatric Annals 17: 340–342, 1987

    Google Scholar 

  • Gonzalez FJ, Skoda R, Kimura S, Umeno M, Zanger UM, et al. Characterization of the common genetic defect in humans deficient in debrisoquine metabolism. Nature 331: 442–446, 1988

    Article  PubMed  CAS  Google Scholar 

  • Goodman WK, Charney DS. Therapeutic applications and mechanism of action of monoamine oxidase inhibitors and heterocyclic antidepressant drugs. Journal of Clinical Psychiatry 46: 6–22, 1985

    PubMed  CAS  Google Scholar 

  • Gram LF. Inadequate dosing and pharmacokinetic variability as confounding factors in assessment of efficacy of antidepressants. Clinical Neuropharmacology 13: S35–S44, 1990

    Article  PubMed  Google Scholar 

  • Gram LF, Cristensen T. First pass metabolism of imipramine in man. Clinical Pharmacology and Therapeutics 17: 555–563, 1975

    PubMed  CAS  Google Scholar 

  • Gram LF, Overo FK. Drug interaction: inhibitory effect of neuroleptics on the metabolism of tricyclic antidepressants in man. British Medical Journal 1: 463–465, 1972

    Article  PubMed  CAS  Google Scholar 

  • Gram LF, Reisby N, Ibsen I, Nagy A, Dencker SJ, et al. Plasma levels and antidepressive effect of imipramine. Clinical Pharmacology and Therapeutics 19: 318–324, 1976

    PubMed  CAS  Google Scholar 

  • Gram LF, Sondergaard IB, Christiansen J, Peterson GO, Bech P, et al. Steady-state kinetics of imipramine in patients. Psychopharmacology 54: 255–261, 1977

    Article  PubMed  CAS  Google Scholar 

  • Greenblatt DJ, Friedman H, Burstein ES, Scavone JM, Blyden GT, et al. Trazodone kinetics: effect of age, gender and obesity. Clinical Pharmacology and Therapeutics 42: 193–200, 1987

    Article  PubMed  CAS  Google Scholar 

  • Gupta RN, Molnar G, Hill RE, Gupta ML. Estimation of amitriptyline and its metabolites in serum and urine by GLC using a nitrogen specific detector. Clinical Biochemistry 9: 247–251, 1976

    Article  PubMed  CAS  Google Scholar 

  • Hammer W, Sjöqvist F. Plasma levels of monomethylated tricyclic antidepressants during treatment with imipramine-like compounds. Life Sciences 6: 1895–1903, 1967

    Article  PubMed  CAS  Google Scholar 

  • Hanin I, Koslow SH, Kocsis JH, Bowden CL, Brunswick D, et al. Cerebrospinal fluid levels of amitriptyline, nortriptyline, imipramine and desmethylimipramine: relationship to plasma levels and treatment outcome. Journal of Affective Disorders 9: 69–78, 1985

    Article  PubMed  CAS  Google Scholar 

  • Henauer SA, Hollister LE. Cimetidine interaction with imipramine and nortriptyline. Clinical Pharmacology and Therapeutics 35: 183–187, 1984

    Article  PubMed  CAS  Google Scholar 

  • Hollister LE. Monitoring tricyclic antidepressant plasma concentrations. Journal of the American Medical Association 241: 2530–2533, 1979

    Article  PubMed  CAS  Google Scholar 

  • Hrdina PD, Lapierre YD. Clinical response, plasma levels and pharmacokinetics of desipramine in depressed in-patients. Progress in Neuro-Psychopharmacology 4: 591–600, 1981

    Article  Google Scholar 

  • Hrdina PD, Lapierre YD, Koranyi EK. Altered amitriptyline kinetics in a depressed patient with porto-caval anastomosis. Canadian Journal of Psychiatry 30: 111–113, 1985

    CAS  Google Scholar 

  • Hrdina PD, Lapierre YD, McIntosh B, Oyewumi LK. Mianserin kinetics in depressed patients. Clinical Pharmacology and Therapeutics 33: 757–762, 1983

    Article  PubMed  CAS  Google Scholar 

  • Hui KK. Hypertensive crisis induced by interaction of Clonidine with imipramine. Journal of the American Geriatrics Society 31: 164–165, 1983

    PubMed  CAS  Google Scholar 

  • John VA, Luscombe DK, Kemp H. Effects of age, cigarette smoking and the oral contraceptive on the pharmacokinetics of clomipramine and its desmethyl metabolite during chronic dosing. Journal of International Medical Research 8: 88–95, 1980

    PubMed  Google Scholar 

  • Kaplan CA. Controversies in therapeutics: depression in childhood. Drugs may be useful. British Medical Journal 300: 1260–1261, 1990

    Article  PubMed  CAS  Google Scholar 

  • Katz IR, Simpson GM, Jethanandani V, Cooper T, Muhly C. Steady-state pharmacokinetics of nortriptyline in the frail elderly. Neuro-Psychopharmacology 2: 229–235, 1989

    CAS  Google Scholar 

  • Katon W. The epidemiology of depression in medical care. International Journal of Psychiatry in Medicine 17: 93–112, 1987

    Article  PubMed  CAS  Google Scholar 

  • Kitanaka I, Ross RJ, Cutler N, Zavadil AP, Potter WZ. Altered hydroxydesipramine concentrations in elderly depressed patients. Clinical Pharmacology and Therapeutics 31: 51–55, 1982

    Article  PubMed  CAS  Google Scholar 

  • Kragh-Sörensen P, Asberg M, Eggert-Hansen C. Plasma-nortriptyline levels in endogenous depression. Lancet 1: 113–115, 1973

    Article  PubMed  Google Scholar 

  • Kragh-Sörensen P, Eggert Hansen C, Baastrup PC, Hvidberg EF. Self-inhibiting action of nortriptylin’s antidepressive effect at high plasma levels: a randomized, double-blind study controlled by plasma concentrations in patients with endogenous depression. Psychopharmacologia 45: 305–312, 1976

    Article  PubMed  Google Scholar 

  • Kragh-Sörensen P, Larsen NE. Factors influencing nortriptyline steady-state kinetics. Clinical Pharmacology and Therapeutics 28: 796–803, 1980

    Article  PubMed  Google Scholar 

  • Kristensen CB. Imipramine serum protein binding in healty subjects. Clinical Pharmacology and Therapeutics 34: 689–694, 1983

    Article  PubMed  CAS  Google Scholar 

  • Kristensen CB, Gram LF. Equilibrium dialysis for determination of protein binding of imipramine: evaluation of a method. Acta Pharmacologica et Toxicologica 50: 130–136, 1982

    Article  PubMed  CAS  Google Scholar 

  • Kukull WA, Koepsell TD, Invi TS, Borson S, Okimoto J, et al. Depression and physical illness among elderly general medical clinic patients. Journal of Affective Disorders 10: 153–162, 1986

    Article  PubMed  CAS  Google Scholar 

  • Kupfer DJ, Hanin I, Spiker DG, Grau T, Coble P. Amitriptyline plasma levels and clinical response in primary depression. Clinical Pharmacology and Therapeutics 22: 904–911, 1977

    PubMed  CAS  Google Scholar 

  • Kupfer DJ, Hanin I, Spiker DG, Neil J, Coble P, et al. Amitriptyline plasma levels and clinical response in primary depression: II. Communications in Psychopharmacology 2: 441–450, 1978

    PubMed  CAS  Google Scholar 

  • Kuss HJ, Jungkunz G. Nonlinear pharmacokinetics of chlorimipramine after infusion and oral administration in patients. Progress in Neuro-Psychopharmacology and Biological Psychiatry 10: 739–748, 1986

    Article  PubMed  CAS  Google Scholar 

  • Kutcher SP, Reid K, Dubbin JD, Shulman KI. Electrocardiogram changes and therapeutic desipramine and 2-hydroxy-desipramine concentrations in elderly depressives. British Journal of Psychiatry 148: 676–679, 1986

    Article  PubMed  CAS  Google Scholar 

  • Kvinesdal B, Molin J, Froland A, Gram L. Imipramine treatment of painful diabetic neuropathy. Journal of the American Medical Association 251: 1727–1730, 1984

    Article  PubMed  CAS  Google Scholar 

  • Lacomblez L, Warot D, Bouche P, Derousesne C. Suppression de l’effet antihypertenseur de la Clonidine par le clomipramine. Revue de Médicine Interne 9: 291–293, 1988

    Article  CAS  Google Scholar 

  • Lieberman JA, Cooper TB, Suckow RF, Steinberg H, Borenstein M, et al. Tricyclic antidepressant and metabolite levels in chronic renal failure. Clinical Pharmacology and Therapeutics 37: 301–307, 1985

    Article  PubMed  CAS  Google Scholar 

  • Leishmann AWD, Matthews HL, Smith AJ. Antagonism of guanethidine by imipramine. Lancet 1: 112, 1963

    Article  Google Scholar 

  • Lindenbaum J, Rund DG, Butler VP, Tse-Eng D, Saha JR. Inactivation of digoxin by the gut flora: reversal by antibiotic therapy. New England Journal of Medicine 305: 789–794, 1981

    Article  PubMed  CAS  Google Scholar 

  • Liisberg P, Mose H, Amdisen A, Jörgensen A, Petersen HEH. A clinical trial comparing sustained release amitriptyline (Saroten Retard) and conventional amitriptyline tablets (Saroten) in endogenously depressed patients with simultaneous determination of serum levels of amitriptyline and nortriptyline. Acta Psychiatrica Scandinavica 57: 426–435, 1978

    Article  PubMed  CAS  Google Scholar 

  • Maguire KP, Norman TR, Burrows GD, Scaggins BA. A pharmacokinetic study of mianserin. European Journal of Clinical Pharmacology 21: 517–520, 1982

    Article  PubMed  CAS  Google Scholar 

  • Mahgoub A, Idle JR, Dring LJ, Lancaster R, Smith RL. Polymorphic hydroxylation of debrisoquine in man. Lancet 2: 584–586, 1977

    Article  PubMed  CAS  Google Scholar 

  • Max MB, Lynch SA, Muir J, Shoaf SE, Smoller B, et al. New England Journal of Medicine 326: 1250–1256, 1992

    Article  PubMed  CAS  Google Scholar 

  • McInnes GT. The value of therapeutic drug monitoring to the practising physician — an hypothesis in need of testing. British Journal of Clinical Pharmacology 27: 281–284, 1989

    Article  PubMed  CAS  Google Scholar 

  • Meador-Woodruff JH. Psychiatric side effects of tricyclic antidepressants. Hospital and Community Psychiatry 41: 84–86, 1990

    PubMed  CAS  Google Scholar 

  • Meador-Woodruff JH, Abil M, Wisner-Carlson R, Grunhaus L. Behavioral and cognitive toxicity related to elevated plasma tricyclic antidepressant levels. Journal of Clinical Psycopharmacology 8: 28–32, 1988

    CAS  Google Scholar 

  • Mellstrom B, Bertilsson L, Lou YC, Sawe RL, Sjöqvist F. Amitriptyline metabolism: relationship to polymorphic debrisoquine hydroxylation. Clinical Pharmacology and Therapeutics 34: 516–520, 1983

    Article  PubMed  CAS  Google Scholar 

  • Mellstrom B, Bertilsson L, Sawe J, Schulz HU, Sjöqvist F. E- and Z-hydroxylation of nortriptyline: relationship to polymorphic debrisoquine hydroxylation. Clinical Pharmacology and Therapeutics 30: 189–193, 1981

    Article  PubMed  CAS  Google Scholar 

  • Mendlewicz J, Linkowski P, Rees JA. A double-blind comparison of dothiepin and amitriptyline in patients with primary effective disorder: serum levels and clinical response. British Journal of Psychiatry 136: 154–160, 1980

    Article  PubMed  CAS  Google Scholar 

  • Meyer JF, McAllister CK, Goldberg LI. Insidious and prolonged antagonism of guanethidine by amitriptyline. Journal of the American Medical Association 213: 1487–1489, 1970

    Article  PubMed  CAS  Google Scholar 

  • Milner G, Hills NF. Adynamic ileus and nortriptyline. British Medical Journal 1: 841–842, 1966

    Article  PubMed  CAS  Google Scholar 

  • Mitchell JR, Cavanaugh JH, Arias L, Oates JA. Guanetidine and related agents: III. Antagonism by drugs which inhibit the norepinephrine pump in man. Journal of Clinical Investigation 49: 1596–1604, 1970

    Article  PubMed  CAS  Google Scholar 

  • Mitchell JR, Arias L, Oates JR. Antagonism of hypotensive action of guanetidine sulfate by desipramine hydrochloride. Journal of the American Medical Association 202: 973–975, 1967

    Article  PubMed  CAS  Google Scholar 

  • Montgomery S, Braithwaite R, Dawling S, McAuley R. High plasma nortriptyline levels in the treatment of depression. Clinical Pharmacology and Therapeutics 23: 309–314, 1978

    PubMed  CAS  Google Scholar 

  • Montgomery SA, McAuley R, Rani SJ, Montgomery DB. Amitriptyline plasma concentration and clinical response. British Medical Journal 89: 230–231, 1979

    Article  Google Scholar 

  • Moody JP, White SF, McDonald AJ, Naylor GJ. Pharmacokinetic aspects of protriptyline plasma levels. European Journal of Clinical Pharmacology 11: 51–56, 1977

    Article  PubMed  CAS  Google Scholar 

  • Morselli PL, Cuche H, Zarifian E. Pharmacokinetics of psychotropic drugs in the pediatric patient. Advances in Biological Psychiatry 2: 70–86, 1978

    Google Scholar 

  • Murphy GE, Simons AD, Wetzel RD. Plasma nortriptyline and clinical response in depression. Journal of Affective Disorders 9: 123–129, 1985

    Article  Google Scholar 

  • Muscettola G, Goodwin FK, Potter WZ, Claeys MM, Markey SP. Imipramine and desipramine in plasma and spinal fluid: relationship to clinical response and serotonin metabolism. Archives of General Psychiatry 35: 621–625, 1978

    Article  PubMed  CAS  Google Scholar 

  • Nagy A, Treiber L. Quantitative determination of imipramine and desipramine in human blood plasma by direct densitometry of thin layer chromatograms. Journal of Pharmacy and Pharmacology 25: 599–603, 1973

    Article  PubMed  CAS  Google Scholar 

  • Nagy A, Johansson R. Plasma levels of imipramine and desipramine in man after different routes of administration. Naunyn-Schmiedeberg’s Archives of Pharmacology 290: 145–160, 1975

    Article  PubMed  CAS  Google Scholar 

  • Nelson JC, Jatlow PI, Mazure C. Desipramine plasma levels and response in elderly melancholic patients. Journal of Clinical Psychopharmacology 5: 217–220, 1985

    Article  PubMed  CAS  Google Scholar 

  • Nelson JC, Jatlow PI. Neuroleptic effect on desipramine steady-state plasma concentrations. American Journal of Psychiatry 137: 1232–1234, 1980

    PubMed  CAS  Google Scholar 

  • Nelson JC, Bock JL, Jatlow PI. Clinical implication of 2-hydroxydesipramine plasma concentrations. Clinical Pharmacology and Therapeutics 33: 183–189, 1983

    Article  PubMed  CAS  Google Scholar 

  • Nelson JC, Jatlow P, Quinlan DM, Bowers MB. Desipramine plasma concentration and antidepressant response. Archives of General Psychiatry 39: 1419–1422, 1982

    Article  PubMed  CAS  Google Scholar 

  • Nelson JC, Jatlow PI. Nonlinear desipramine kinetics: prevalence and importance. Clinical Pharmacology and Therapeutics 41: 666–670, 1987

    Article  PubMed  CAS  Google Scholar 

  • Nies A, Robinson D, Friedman MJ, Green R, Cooper TB, et al. Relationship between age and tricyclic antidepressant plasma levels. American Journal of Psychiatry 134: 790–793, 1977

    PubMed  CAS  Google Scholar 

  • Nordin C, Bertilsson L, Dahl ML, Resul B, Toresson G, et al. Treatment of depression with E-10-hydroxynortriptyline — a pilot study on biochemical effects and pharmacokinetics. Psychopharmacology 103: 287–290, 1991

    Article  PubMed  CAS  Google Scholar 

  • Nordin C, Siwers B, Benitez J, Bertilsson L. Plasma concentrations of nortriptyline and its 10-hydroxymetabolite in depressed patients: relationship to polymorphic debrisoquine hydroxylation metabolic ratio. British Journal of Clinical Pharmacology 19: 832–835, 1985

    Article  PubMed  CAS  Google Scholar 

  • Pary R, Tobias CR, Lippman S. Antidepressants and the cardiac patient: selecting an appropriate medication. Postgraduate Medicine 85: 267–276, 1989

    PubMed  CAS  Google Scholar 

  • Perry PJ, Browne JL, Alexander B, Pfohl BM, Dunner FJ, et al. Relationship of free nortriptyline levels to therapeutic response. Acta Psychiatrica Scandinavica 72: 120–125, 1985

    Article  PubMed  CAS  Google Scholar 

  • Piafsky KM, Borgä O. Plasma protein of basic drugs II: importance of alpha-1 acid glycoprotein for interindividual variation. Clinical Pharmacology and Therapeutics 22: 545–549, 1977

    PubMed  CAS  Google Scholar 

  • Pike E, Skuterud B. Plasma binding variations of amitriptyline and nortriptyline. Clinical Pharmacology and Therapeutics 32: 228–234, 1982

    Article  PubMed  CAS  Google Scholar 

  • Pike E, Skuterud B, Kierulf P, Lunde PKM. Significance of lipoproteins in serum binding variations of amitriptyline, nortriptyline and quinidine. Clinical Pharmacology and Therapeutics 32: 599–606, 1982

    Article  PubMed  CAS  Google Scholar 

  • Pollock BC, Perel JM. Hydroxy metabolites of antidepressants: evaluation of relative cardiotoxicity. In Dahl & Gram (Eds) Clinical pharmacology in psychiatry: molecular studies to clinical reality, pp. 232–236, Springer-Verlag, Berlin, 1989

    Chapter  Google Scholar 

  • Pollock BG, Perel JM, Shostak M, Antelman SM, Brandom B, et al. Understanding the response lag to tricycles: application of pulse loading regimens with intravenous clomipramine. Psychopharmacology Bulletin 22: 214–219, 1986

    PubMed  CAS  Google Scholar 

  • Potter WZ, Calil HM, Manian AM, Zavadil AP, Goodwin FK. Hydroxylated metabolites of tricyclic antidepressants: preclinical assessment of activity. Biological Psychiatry 14: 601–613, 1979b

    PubMed  CAS  Google Scholar 

  • Potter WZ, Muscettola G, Goodwin FK. Binding of imipramine to plasma protein and to brain tissue: relationship to CSF tricyclic levels in man. Psychopharmacology 63: 187–192, 1979a

    Article  PubMed  CAS  Google Scholar 

  • Potter WZ, Calil HM, Sutfin TA, Zavadil AP, Jusko WJ, et al. Active metabolites of imipramine and desipramine in man. Clinical Pharmacology and Therapeutics 31: 393–401, 1982

    Article  PubMed  CAS  Google Scholar 

  • Preskorn SH, Bupp SJ, Weller EB, Weller RA. Plasma levels of imipramine and metabolites in 68 hospitalized children. Journal of the American Academy of Child and Adolescent Psychiatry 28: 373–375, 1989

    Article  PubMed  CAS  Google Scholar 

  • Preskorn SH, Fast GA. Therapeutic drug monitoring: efficacy, safety, and cost effectiveness. Journal of Clinical Psychiatry 52: 23–33, 1991

    PubMed  Google Scholar 

  • Preskorn SH, Jerkovich G. Central nervous system toxicity of tricyclic antidepressants: phenomenology, course, risk factors and role of therapeutic drug monitoring. Journal of Clinical Psychopharmacology 10: 88–95, 1990

    Article  PubMed  CAS  Google Scholar 

  • Preskorn SH, Uac DS. Plasma levels of amitriptyline: effect of age and sex. Journal of Clinical Psychiatry 46: 276–277, 1985

    PubMed  CAS  Google Scholar 

  • Preskorn S, Weller EB, Weller RA. Depression in children: relationship between plasma imipramine levels and response. Journal of Clinical Psychiatry 43: 450–453, 1982

    PubMed  CAS  Google Scholar 

  • Puig-Antich J, Perel JM, Lupatkin W, Chambers W, Tabrizi MA, et al. Plasma levels of imipramine (IMI) and desmethylimipramine (DMI) and clinical response in prepubertel major depressive disorder: a preliminary report. Journal of the American Academy of Child Psychiatry 18: 616–627, 1979

    Article  PubMed  CAS  Google Scholar 

  • Reisby N, Gram LF, Bech P, Nagy A, Petersen GO, et al. Imipramine: clinical effects and pharmacokinetic variability. Psychopharmacology 54: 263–272, 1977

    Article  PubMed  CAS  Google Scholar 

  • Rickels K, Weise C, Case G, Hucker H. Tricyclic plasma levels in depressed outpatients treated with amitriptyline. Psychopharmacology 80: 14–18, 1983

    Article  PubMed  CAS  Google Scholar 

  • Robinson DS, Cooper TB, Howard D, Corcella J, Albright D. Amitriptyline and hydroxylated metabolite plasma levels in depressed outpatients. Journal of Psychopharmacology 5: 83–88, 1985

    CAS  Google Scholar 

  • Rowan PR, Paykel ES, Marks V, Mould G, Bhat A. Serum levels and response to amitriptyline in depressed out-patients. Neuropsychobiology 12: 9–15, 1984

    Article  PubMed  CAS  Google Scholar 

  • Rowe JW, Andres R, Tobin JD, Norris AH, Shock NW. The effect of age on creatinine clearance in man: a cross-sectional and longitudinal study. Journal of Gerontology 31: 155–163, 1976

    PubMed  CAS  Google Scholar 

  • Ryan ND, Puig-Antich J, Cooper T, Rabinovich H, Ambrosini P, et al. Imipramine in adolescent major depression: plasma level and clinical response. Acta Psychiatrica Scandinavica 73: 275–288, 1986

    Article  PubMed  CAS  Google Scholar 

  • Sallee FR, Pollock BG. Clinical pharmacokinetics of imipramine and desipramine. Clinical Pharmacokinetics 18: 346–364, 1990

    Article  PubMed  CAS  Google Scholar 

  • Sallee F, Stiller R, Perel J, Rancurello M. Targeting imipramine dose in children with depression. Clinical Pharmacology and Therapeutics 40: 8–13, 1986

    Article  PubMed  CAS  Google Scholar 

  • Sandoz M, Vandel S, Vandel B, Bonin B, Hory B, et al. Metabolism of amitriptyline in patients with chronic renal failure. European Journal of Clinical Pharmacology 26: 227–232, 1984

    Article  PubMed  CAS  Google Scholar 

  • Sathananthan GL, Gershan S, Almeida M, Spector S. Correlation between plasma and cerebrospinal levels of imipramine. Archives of General Psychiatry 33: 1109–1110, 1976

    Article  PubMed  CAS  Google Scholar 

  • Schenker S, Bergstrom RF, Wolen RL, Lemberg L. Fluoxetine disposition and elimination in cirrhosis. Clinical Pharmacology and Therapeutics 44: 354–359, 1988

    Google Scholar 

  • Schneider LS. Monitoring hydroxymetabolites of nortriptyline. New England Journal of Medicine 314: 989, 1986

    Article  Google Scholar 

  • Schneider LS, Cooper TB, Staples FR, Sloane RB. Prediction of individual dosage of nortriptyline in depressed elderly outpatients. Journal of Clinical Psychopharmacology 7: 311–314, 1987

    Article  PubMed  CAS  Google Scholar 

  • Schenker S, Bergstrom RF, Wolen RL, Lemberg L. Fluoxetine disposition and elimination in cirrhosis. Clinical Pharmacology and Therapeutics 44: 353–359, 1988

    Article  PubMed  CAS  Google Scholar 

  • Schulz P, Tumer-Tarmyasu K, Smith G, Giacomini KM, Blaschke TF. Amitriptyline disposition in young and elderly normal men. Clinical Pharmacology and Therapeutics 33: 360–366, 1983

    Article  PubMed  CAS  Google Scholar 

  • Seppala T, Linnoila M, Elonen E, Matila M, Maki M. Effect of tricyclic antidepressents and alcohol on psychomotor skills related to driving. Clinical Pharmacology and Therapeutics 17: 515–522, 1975

    PubMed  CAS  Google Scholar 

  • Shami M, Elliot HL, Kelman AW, Whiting B. The pharmacokinetics of mianserin. British Journal of Clinical Pharmacology 15: 313S–322S, 1983

    Article  PubMed  Google Scholar 

  • Simpson GM, Pi EH, Abdelmalek E, Boyd JL, Caroll RS, et al. Relationship between plasma desipramine levels and clinical outcome for RDC major depressive inpatients. Psychopharmacology 80: 240–242, 1983

    Article  PubMed  CAS  Google Scholar 

  • Sindrup SH, Brösen K, Gram L. Nonlinear kinetics of imipramine in low and medium plasma level ranges. Therapeutic Drug Monitoring 12: 445–449, 1990

    Article  PubMed  CAS  Google Scholar 

  • Sirota P, Ori J, Schild K, Appel S, Brandis S, et al. Electrocardiographic effects of amitriptyline in therapeutic doses on 24-hr monitoring (Holter) with correlation to plasma levels. Biological Psychiatry 27: 1053–1056, 1990

    Article  PubMed  CAS  Google Scholar 

  • Sjöqvist F. Pharmacogenetics of antidepressants. In Dahl & Gram (Eds) Clinical pharmacology in psychiatry, pp. 181–191, Springer-Verlag, Heidelberg, 1989

    Chapter  Google Scholar 

  • Skinner C, Coule DC, Johston AW. Antagonism of the hypotensive action of bethanidine and debrisoquine by tricyclic antidepressants. Lancet 2: 564–566, 1969

    Article  PubMed  CAS  Google Scholar 

  • Spina E, Campo GM, Avenoso A, Pollicino MA, Caputi AP. Interaction between fluvoxamine and imipramine/desipramine in four patients. Therapeutic Drug Monitoring 14: 194–196, 1992

    Article  PubMed  CAS  Google Scholar 

  • Spina E, Steiner E, Ericsson O, Sjöqvist F. Hydroxylation of desmethylimipramine: dependence on the debrisoquine hydroxylation phenotype. Clinical Pharmacology and Therapeutics 41: 457–461, 1987

    Google Scholar 

  • Suftin TA, Devane CL, Jusko WJ. The analysis and disposition of imipramine and its active metabolites in man. Psychopharmacology 82: 310–317, 1984

    Article  Google Scholar 

  • Task Force on the Use of Laboratory Tests in Psychiatry. Tricyclic antidepressants — blood level measurements and clinical outcome: an APA Task Force Report. American Journal of Psychiatry 142: 155–162, 1985

    Google Scholar 

  • Traskman L, Asberg M, Bertilsson L, Cronholm B, Mellstrom B, et al. Plasma levels of chlorimipramine and its desmethyl metabolite during treatment of depression. Clinical Pharmacology and Therapeutics 26: 600–610, 1979

    PubMed  CAS  Google Scholar 

  • Vandel S, Vandel B, Sandoz M, Allers G, Bechtel P, et al. Clinical response and plasma concentration of amitriptyline and its metabolite nortriptyline. European Journal of Clinical Pharmacology 14: 185–190, 1978

    Article  PubMed  CAS  Google Scholar 

  • Verbeek RK. Glucuronidation and disposition of drug glucuronides in patients with renal failure. Drug Metabolism and Disposition 10: 87–89, 1982

    Google Scholar 

  • Vestal RE. Drug use in the elderly: a review of problems and special considerations. Drugs 16: 358–382, 1978

    Article  PubMed  CAS  Google Scholar 

  • Virtanen R, Scheinin M, Lisalo E. Single dose pharmacokinetics of doxepin in healthy volunteers. Acta Pharmacologica et Toxicologica 47: 371–376, 1980

    Article  PubMed  CAS  Google Scholar 

  • Wallace SM, Verbeeck RK. Plasma protein binding of drugs in the elderly. Clinical Pharmacokinetics 12: 47–72, 1987

    Article  Google Scholar 

  • Walter CJS. Drug plasma levels and clinical effect. Proceedings of the Royal Society of Medicine 64: 282–285, 1971

    PubMed  CAS  Google Scholar 

  • Warnes H, Lehman HE, Ban TA. Adynamic ileus during psychoactive medication: a report of three fatal and five severe cases. Canadian Medical Association Journal 96: 1112–1113, 1967

    PubMed  CAS  Google Scholar 

  • Warton RN, Perel JM, Dayton PG, Malitz S. A potential use for the interaction of methylphenidate with tricyclic antidepressants. American Journal of Psychiatry 127: 1619–1625, 1971

    Google Scholar 

  • Watson ID, Thomson AH. The value of therapeutic drug monitoring to the practising physician — an hypothesis needing sensible application. British Journal of Clinical Pharmacology 28: 619–620, 1989

    Article  PubMed  CAS  Google Scholar 

  • Wells BG, Pieper JA, Self TH, Stewart CF, Waldon SL, et al. The effect of ranitidine and cimetidine on imipramine disposition. European Journal of Clinical Pharmacology 31: 285–290, 1986

    Article  PubMed  CAS  Google Scholar 

  • Whyte SF, Macdonald AJ, Naylor GJ, Moody JP. Plasma concentrations of protriptyline and clinical effects in depressed women. British Journal of Psychiatry 128: 384–390, 1976

    Article  PubMed  CAS  Google Scholar 

  • Ziegler VE, Biggs JT. Tricyclic plasma levels: effects of age, race, sex and smoking. Journal of the American Medical Association 238: 2167–2169, 1977

    Article  PubMed  CAS  Google Scholar 

  • Ziegler VE, Biggs JT, Wylie LT, Rosen SH, Hawf DJ, et al. Doxepine kinetics. Clinical Pharmacology and Therapeutics 23: 573–579, 1978

    PubMed  CAS  Google Scholar 

  • Ziegler VE, Clayton PJ, Taylor JR, Tee Co B, Biggs JT. Nortriptyline plasma levels and therapeutic response. Clinical Pharmacology and Therapeutics 20: 458–463, 1976b

    PubMed  CAS  Google Scholar 

  • Ziegler VE, Tee Co B, Taylor JR, Clayton PJ, Biggs JT. Amitriptyline plasma levels and therapeutic response. Clinical Pharmacology and Therapeutics 19: 795–801, 1976a

    PubMed  CAS  Google Scholar 

  • Young RC, Alexopoulus GS, Shamoian CA, Manley MW, Dhar HK, et al. Plasma 10-hydroxynortriptyline in elderly depressed patients. Clinical Pharmacology and Therapeutics 35: 540–544, 1984

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Furlanut, M., Benetello, P. & Spina, E. Pharmacokinetic Optimisation of Tricyclic Antidepressant Therapy. Clin. Pharmacokinet. 24, 301–318 (1993). https://doi.org/10.2165/00003088-199324040-00004

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-199324040-00004

Keywords

Navigation