Skip to main content

Pharmacogenetic/Pharmacogenomic Tests for Treatment Prediction in Depression

  • Chapter
  • First Online:
Major Depressive Disorder

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1305))

Abstract

Genetic factors play a significant but complex role in antidepressant (AD) response and tolerability. During recent years, there is growing enthusiasm in the promise of pharmacogenetic/pharmacogenomic (PGx) tools for optimizing and personalizing treatment outcomes for patients with major depressive disorder (MDD). The influence of pharmacokinetic and pharmacodynamic genes on response and tolerability has been investigated, including those encoding the cytochrome P450 superfamily, P-glycoprotein, monoaminergic transporters and receptors, intracellular signal transduction pathways, and the stress hormone system. Genome-wide association studies are also identifying new genetic variants associated with AD response phenotypes, which, combined with methods such as polygenic risk scores (PRS), is opening up new avenues for novel personalized treatment approaches for MDD. This chapter describes the basic concepts in PGx of AD response, reviews the major pharmacokinetic and pharmacodynamic genes involved in AD outcome, discusses PRS as a promising approach for predicting AD efficacy and tolerability, and addresses key challenges to the development and application of PGx tests.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hillhouse TM, Porter JH (2015) A brief history of the development of antidepressant drugs: from monoamines to glutamate. Exp Clin Psychopharmacol 23(1):1–21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Fabbri C, Crisafulli C, Calabrò M, Spina E, Serretti A (2016) Progress and prospects in pharmacogenetics of antidepressant drugs. Expert Opin Drug Metab Toxicol 12(10):1157–1168

    Article  CAS  PubMed  Google Scholar 

  3. Trivedi MH, Rush AJ, Wisniewski SR, Nierenberg AA, Warden D, Ritz L et al (2006) Evaluation of outcomes with citalopram for depression using measurement-based care in STAR*D: implications for clinical practice. Am J Psychiatry 163(1):28–40

    Article  PubMed  Google Scholar 

  4. Cohen ZD, DeRubeis RJ (2018) Treatment selection in depression. Annu Rev Clin Psychol 14(1):209–236

    Article  PubMed  Google Scholar 

  5. Tomba E, Fava GA (2012) Treatment selection in depression: the role of clinical judgment. Psychiatr Clin North Am 35(1):87–98

    Article  PubMed  Google Scholar 

  6. Fabbri C, Serretti A (2018) Clinical application of antidepressant pharmacogenetics: Considerations for the design of future studies. Neurosci Lett 726:133651

    Article  PubMed  CAS  Google Scholar 

  7. Franchini L, Serretti A, Gasperini M, Smeraldi E (1998) Familial concordance of fluvoxamine response as a tool for differentiating mood disorder pedigrees. J Psychiatr Res 32(5):255–259

    Article  CAS  PubMed  Google Scholar 

  8. G L, Rh P, Aj R, Fj M (2009) Pharmacogenetics studies in STAR*D: strengths, limitations, and results. Psychiatr Serv 60(11):1446–1457

    Article  Google Scholar 

  9. Amare AT, Schubert KO, Baune BT (2017) Pharmacogenomics in the treatment of mood disorders: Strategies and Opportunities for personalized psychiatry. EPMA J. 8(3):211–227

    Article  PubMed  PubMed Central  Google Scholar 

  10. Pharmacogenetics BMG (2018) Psychiatric care: a review and commentary. J Ment Health Clin Psychol 2(2):17–24

    Article  Google Scholar 

  11. Müller DJ, Rizhanovsky Z (2020) From the origins of pharmacogenetics to first applications in psychiatry. Pharmacopsychiatry 53(4):155–161

    Google Scholar 

  12. Roden DM, McLeod HL, Relling MV, Williams MS, Mensah GA, Peterson JF et al (2019) Pharmacogenomics. Lancet 394(10197):521–532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Rioux PP (2000) Clinical trials in pharmacogenetics and pharmacogenomics: methods and applications. Am J Health Syst Pharm 57(9):887–898

    Article  CAS  PubMed  Google Scholar 

  14. Robarge JD, Li L, Desta Z, Nguyen A, Flockhart DA (2007) The star-allele nomenclature: retooling for translational genomics. Clin Pharmacol Ther 82(3):244–248

    Article  CAS  PubMed  Google Scholar 

  15. Kalman LV, Agúndez J, Appell ML, Black JL, Bell GC, Boukouvala S et al (2016) Pharmacogenetic allele nomenclature: International workgroup recommendations for test result reporting. Clin Pharmacol Ther 99(2):172–185

    Article  CAS  PubMed  Google Scholar 

  16. Porcelli S, Fabbri C, Spina E, Serretti A, Ronchi DD (2011) Genetic polymorphisms of cytochrome P450 enzymes and antidepressant metabolism. Expert Opin Drug Metabolism Toxicol 7(9):1101–1115

    Article  CAS  Google Scholar 

  17. Breitenstein B, Scheuer S, Brückl TM, Meyer J, Ising M, Uhr M et al (2016) Association of ABCB1 gene variants, plasma antidepressant concentration, and treatment response: Results from a randomized clinical study. J Psychiatr Res 73:86–95

    Article  PubMed  Google Scholar 

  18. van der Weide J, Hinrichs JWJ (2006) The influence of cytochrome P450 pharmacogenetics on disposition of common antidepressant and antipsychotic medications. Clin Biochem Rev 27(1):17–25

    PubMed  PubMed Central  Google Scholar 

  19. Walden LM, Brandl EJ, Tiwari AK, Cheema S, Freeman N, Braganza N et al (2019) Genetic testing for CYP2D6 and CYP2C19 suggests improved outcome for antidepressant and antipsychotic medication. Psychiatry Res 279:111–115

    Article  CAS  PubMed  Google Scholar 

  20. Hicks J, Sangkuhl K, Swen J, Ellingrod V, Müller D, Shimoda K et al (2017) Clinical pharmacogenetics implementation consortium guideline (CPIC) for CYP2D6 and CYP2C19 genotypes and dosing of tricyclic antidepressants: 2016 update. Clin Pharmacol Ther 102(1):37–44

    Google Scholar 

  21. Jarvis JP, Peter AP, Shaman JA (2019) Consequences of CYP2D6 copy-number variation for pharmacogenomics in psychiatry. Front Psychiatry 10:432

    Article  PubMed  PubMed Central  Google Scholar 

  22. Huezo-Diaz P, Perroud N, Spencer EP, Smith R, Sim S, Virding S et al (2012) CYP2C19 genotype predicts steady state escitalopram concentration in GENDEP. J Psychopharmacol (Oxford) 26(3):398–407

    Article  CAS  Google Scholar 

  23. Tsai M-H, Lin K-M, Hsiao M-C, Shen WW, Lu M-L, Tang H-S et al (2010) Genetic polymorphisms of cytochrome P450 enzymes influence metabolism of the antidepressant escitalopram and treatment response. Pharmacogenomics 11(4):537–546

    Article  CAS  PubMed  Google Scholar 

  24. Suzuki Y, Sugai T, Fukui N, Watanabe J, Ono S, Inoue Y et al (2011) CYP2D6 genotype and smoking influence fluvoxamine steady-state concentration in Japanese psychiatric patients: lessons for genotype-phenotype association study design in translational pharmacogenetics. J Psychopharmacol (Oxford) 25(7):908–914

    Article  CAS  Google Scholar 

  25. Charlier C, Broly F, Lhermitte M, Pinto E, Ansseau M, Plomteux G (2003) Polymorphisms in the CYP 2D6 gene: association with plasma concentrations of fluoxetine and paroxetine. Ther Drug Monit 25(6):738

    Article  CAS  PubMed  Google Scholar 

  26. Schenk PW, van Fessem M a C, Verploegh-Van Rij S, Mathot R a A, van Gelder T, Vulto AG et al (2008) Association of graded allele-specific changes in CYP2D6 function with imipramine dose requirement in a large group of depressed patients. Mol Psychiatry 13(6):597–605

    Article  CAS  PubMed  Google Scholar 

  27. Ueda M, Hirokane G, Morita S, Okawa M, Watanabe T, Akiyama K et al (2006) The impact of CYP2D6 genotypes on the plasma concentration of paroxetine in Japanese psychiatric patients. Prog Neuropsychopharmacol Biol Psychiatry 30(3):486–491

    Article  CAS  PubMed  Google Scholar 

  28. Sawamura K, Suzuki Y, Someya T (2004 Oct) Effects of dosage and CYP2D6-mutated allele on plasma concentration of paroxetine. Eur J Clin Pharmacol 60(8):553–557

    Article  CAS  PubMed  Google Scholar 

  29. Mcalpine DE, Biernacka JM, Mrazek DA, O’kane DJ, Stevens SR, Langman LJ et al (2011) Effect of cytochrome P450 enzyme polymorphisms on pharmacokinetics of venlafaxine. Ther Drug Monit 33(1):14–20

    Article  CAS  PubMed  Google Scholar 

  30. Grasmäder K, Verwohlt PL, Rietschel M, Dragicevic A, Müller M, Hiemke C et al (2004) Impact of polymorphisms of cytochrome-P450 isoenzymes 2C9, 2C19 and 2D6 on plasma concentrations and clinical effects of antidepressants in a naturalistic clinical setting. Eur J Clin Pharmacol 60(5):329–336

    Article  PubMed  CAS  Google Scholar 

  31. Rau T, Wohlleben G, Wuttke H, Thuerauf N, Lunkenheimer J, Lanczik M et al (2004) CYP2D6 genotype: impact on adverse effects and nonresponse during treatment with antidepressants—a pilot study. Clin Pharmacol Ther 75(5):386–393

    Article  CAS  PubMed  Google Scholar 

  32. Zastrozhin MS, Skryabin VY, Smirnov VV, Grishina EA, Ryzhikova KA, Chumakov EM et al (2019) Effects of CYP2D6 activity on the efficacy and safety of mirtazapine in patients with depressive disorders and comorbid alcohol use disorder. Can J Physiol Pharmacol 97(8):781–785

    Article  CAS  PubMed  Google Scholar 

  33. Peters EJ, Slager SL, Kraft JB, Jenkins GD, Reinalda MS, McGrath PJ et al (2008) Pharmacokinetic genes do not influence response or tolerance to citalopram in the STAR*D sample. PLOS One 3(4):e1872

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Spina E, Gitto C, Avenoso A, Campo GM, Caputi AP, Perucca E (1997) Relationship between plasma desipramine levels, CYP2D6 phenotype and clinical response to desipramine: a prospective study. Eur J Clin Pharmacol. 51(5):395

    Article  CAS  PubMed  Google Scholar 

  35. Murata Y, Kobayashi D, Imuta N, Haraguchi K, Ieiri I, Nishimura R et al (2010 Feb) Effects of the serotonin 1A, 2A, 2C, 3A, and 3B and serotonin transporter gene polymorphisms on the occurrence of paroxetine discontinuation syndrome. J Clin Psychopharmacol 30(1):11

    Article  CAS  PubMed  Google Scholar 

  36. Murphy GM, Kremer C, Rodrigues HE, Schatzberg AF (2003) Pharmacogenetics of antidepressant medication intolerance. Am J Psychiatry 160(10):1830–1835

    Article  PubMed  Google Scholar 

  37. Shams MEE, Arneth B, Hiemke C, Dragicevic A, Müller MJ, Kaiser R et al (2006) CYP2D6 polymorphism and clinical effect of the antidepressant venlafaxine. J Clin Pharm Ther 31(5):493–502

    Article  CAS  PubMed  Google Scholar 

  38. Serretti A, Calati R, Massat I, Linotte S, Kasper S, Lecrubier Y et al (2009) Cytochrome P450 CYP1A2, CYP2C9, CYP2C19 and CYP2D6 genes are not associated with response and remission in a sample of depressive patients. Int Clin Psychopharmacol 24(5):250

    Article  PubMed  Google Scholar 

  39. Suzuki Y, Sawamura K, Someya T (2006) Polymorphisms in the 5-hydroxytryptamine 2A receptor and cytochrome P 4502D6 genes synergistically predict fluvoxamine-induced side effects in Japanese depressed patients. Neuropsychopharmacol 31(4):825–831

    Article  CAS  Google Scholar 

  40. Ng C, Sarris J, Singh A, Bousman C, Byron K, Peh LH et al (2013) Pharmacogenetic polymorphisms and response to escitalopram and venlafaxine over 8 weeks in major depression. Human Psychopharmacol 28(5):516–522

    Article  CAS  Google Scholar 

  41. Belle DJ, Singh H (2008) Genetic factors in drug metabolism. Am Fam Physician 77(11):1553–1560

    PubMed  Google Scholar 

  42. Hicks JK, Sangkuhl K, Swen JJ, Ellingrod VL, Müller DJ, Shimoda K et al (2017) Clinical pharmacogenetics implementation consortium guideline (CPIC) for CYP2D6 and CYP2C19 genotypes and dosing of tricyclic antidepressants: 2016 update. Clin Pharmacol Ther 102(1):37–44

    Article  CAS  PubMed  Google Scholar 

  43. Yu B-N, Chen G-L, He N, Ouyang D-S, Chen X-P, Liu Z-Q et al (2003) Pharmacokinetics of citalopram in relation to genetic polymorphism of Cyp2c19. Drug Metab Dispos 31(10):1255–1259

    Article  CAS  PubMed  Google Scholar 

  44. Jukić MM, Haslemo T, Molden E, Ingelman-Sundberg M (2018) Impact of CYP2C19 genotype on escitalopram exposure and therapeutic failure: a retrospective study based on 2,087 patients. Am J Psychiatry 175(5):463–470

    Article  PubMed  Google Scholar 

  45. Schenk PW, van Vliet M, Mathot R a A, van Gelder T, Vulto AG, van Fessem M a C et al (2010) The CYP2C19*17 genotype is associated with lower imipramine plasma concentrations in a large group of depressed patients. Pharmacogenomics J 10(3):219–225

    Article  CAS  PubMed  Google Scholar 

  46. Rudberg I, Hermann M, Refsum H, Molden E (2008) Serum concentrations of sertraline and N-desmethyl sertraline in relation to CYP2C19 genotype in psychiatric patients. Eur J Clin Pharmacol 64(12):1181

    Article  CAS  PubMed  Google Scholar 

  47. Wang J-H, Liu Z-Q, Wang W, Chen X-P, Shu Y, He N et al (2001) Pharmacokinetics of sertraline in relation to genetic polymorphism of CYP2C19. Clin Pharmacol Ther 70(1):42–47

    Article  CAS  PubMed  Google Scholar 

  48. Aldrich SL, Poweleit EA, Prows CA, Martin LJ, Strawn JR, Ramsey LB (2019) Influence of CYP2C19 metabolizer status on escitalopram/citalopram tolerability and response in youth with anxiety and depressive disorders. Front Pharmacol 10:99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Mrazek DA, Biernacka JM, O’Kane DJ, Black JL, Cunningham JM, Drews MS et al (2011) CYP2C19 variation and citalopram response. Pharmacogenet Genomics 21(1):1–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Fabbri C, Tansey KE, Perlis RH, Hauser J, Henigsberg N, Maier W et al (2018) Effect of cytochrome CYP2C19 metabolizing activity on antidepressant response and side effects: meta-analysis of data from genome-wide association studies. Eur Neuropsychopharmacol 28(8):945–954

    Article  CAS  PubMed  Google Scholar 

  51. Hodgson K, Tansey KE, Uher R, Dernovšek MZ, Mors O, Hauser J et al (2015) Exploring the role of drug-metabolising enzymes in antidepressant side effects. Psychopharmacology 232(14):2609–2617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. LLerena A, Dorado P, Berecz R, González AP (2004) Peñas-LLedó EM. Effect of CYP2D6 and CYP2C9 genotypes on fluoxetine and norfluoxetine plasma concentrations during steady-state conditions. Eur J Clin Pharmacol 59(12):869–873

    Article  CAS  PubMed  Google Scholar 

  53. Scordo MG, Spina E, Dahl M-L, Gatti G, Perucca E (2005) Influence of CYP2C9, 2C19 and 2D6 genetic polymorphisms on the steady-state plasma concentrations of the enantiomers of fluoxetine and norfluoxetine. Basic Clin Pharmacol Toxicol 97(5):296–301

    Article  CAS  PubMed  Google Scholar 

  54. Bousman C, Maruf AA, Müller DJ (2019) Towards the integration of pharmacogenetics in psychiatry: a minimum, evidence-based genetic testing panel. Curr Opin Psychiatry 32(1):7–15

    Article  PubMed  Google Scholar 

  55. Lin K-M, Tsou H-H, Tsai I-J, Hsiao M-C, Hsiao C-F, Liu C-Y et al (2010) CYP1A2 genetic polymorphisms are associated with treatment response to the antidepressant paroxetine. Pharmacogenomics 11(11):1535–1543

    Article  CAS  PubMed  Google Scholar 

  56. Black JL III, O’Kane DJ, Mrazek DA (2007) The impact of CYP allelic variation on antidepressant metabolism: a review. Expert Opin Drug Metab Toxicol 3(1):21–31

    Article  CAS  PubMed  Google Scholar 

  57. Akamine Y, Yasui-Furukori N, Ieiri I, Uno T (2012) Psychotropic drug–drug interactions involving P-glycoprotein. CNS Drugs 26(11):959–973

    Article  CAS  PubMed  Google Scholar 

  58. Linnet K, Ejsing TB (2008) A review on the impact of P-glycoprotein on the penetration of drugs into the brain. Focus on psychotropic drugs. Eur Neuropsychopharmacol 18(3):157–169

    Article  CAS  PubMed  Google Scholar 

  59. Breitenstein B, Brückl TM, Ising M, Müller-Myhsok B, Holsboer F, Czamara D (2015) ABCB1 gene variants and antidepressant treatment outcome: a meta-analysis. Am J Med Genet B Neuropsychiatr Genet 168B(4):274–283

    Article  PubMed  CAS  Google Scholar 

  60. Uhr M, Tontsch A, Namendorf C, Ripke S, Lucae S, Ising M et al (2008) Polymorphisms in the drug transporter gene ABCB1 predict antidepressant treatment response in depression. Neuron 57(2):203–209

    Article  CAS  PubMed  Google Scholar 

  61. Breitenstein B, Scheuer S, Pfister H, Uhr M, Lucae S, Holsboer F et al (2014) The clinical application of ABCB1 genotyping in antidepressant treatment: a pilot study. CNS Spectrums 19(2):165–175

    Article  PubMed  Google Scholar 

  62. Binder EB, Holsboer F (2006) Pharmacogenomics and antidepressant drugs. Ann Med 38(2):82–94

    Article  CAS  PubMed  Google Scholar 

  63. Licinio J, Wong M-L (2011 Mar) Pharmacogenomics of antidepressant treatment effects. Dialogues Clin Neurosci 13(1):63–71

    Article  PubMed  PubMed Central  Google Scholar 

  64. Mrazek DA, Rush AJ, Biernacka JM, O’Kane DJ, Cunningham JM, Wieben ED et al (2009) SLC6A4 variation and citalopram response. Am J Med Genet B Neuropsychiatr Genet 150B(3):341–351

    Article  CAS  PubMed  Google Scholar 

  65. Huezo-Diaz P, Uher R, Smith R, Rietschel M, Henigsberg N, Marusic A et al (2009 Jul) Moderation of antidepressant response by the serotonin transporter gene. Br J Psychiatry 195(1):30–38

    Article  PubMed  Google Scholar 

  66. Porcelli S, Fabbri C, Serretti A (2012) Meta-analysis of serotonin transporter gene promoter polymorphism (5-HTTLPR) association with antidepressant efficacy. Eur Neuropsychopharmacol 22(4):239–258

    Article  CAS  PubMed  Google Scholar 

  67. Hu X-Z, Rush AJ, Charney D, Wilson AF, Sorant AJM, Papanicolaou GJ et al (2007 Jul) Association between a functional serotonin transporter promoter polymorphism and citalopram treatment in adult outpatients with major depression. Arch Gen Psychiatry 64(7):783–792

    Article  CAS  PubMed  Google Scholar 

  68. Zhu J, Klein-Fedyshin M, Stevenson JM (2017) Serotonin transporter gene polymorphisms and selective serotonin reuptake inhibitor tolerability: review of pharmacogenetic evidence. Pharmacotherapy 37(9):1089–1104

    Article  PubMed  Google Scholar 

  69. Kraft JB, Slager SL, McGrath PJ, Hamilton SP (2005) Sequence analysis of the serotonin transporter and associations with antidepressant response. Biol Psychiatry 58(5):374–381

    Article  CAS  PubMed  Google Scholar 

  70. Lemonde S, Du L, Bakish D, Hrdina P, Albert PR (2004) Association of the C(-1019)G 5-HT1A functional promoter polymorphism with antidepressant response. Int J Neuropsychopharmacol 7(4):501–506

    Article  CAS  PubMed  Google Scholar 

  71. Serretti A, Artioli P, Quartesan R (2005) Pharmacogenetics in the treatment of depression: pharmacodynamic studies. Pharmacogenet Genomics 15(2):61–67

    Article  CAS  PubMed  Google Scholar 

  72. Kato M, Fukuda T, Wakeno M, Fukuda K, Okugawa G, Ikenaga Y et al (2006) Effects of the serotonin type 2A, 3A and 3B receptor and the serotonin transporter genes on paroxetine and fluvoxamine efficacy and adverse drug reactions in depressed Japanese patients. Neuropsychobiology 53(4):186–195

    Article  CAS  PubMed  Google Scholar 

  73. Choi M-J, Kang R-H, Ham B-J, Jeong H-Y, Lee M-S (2005) Serotonin receptor 2A gene polymorphism (-1438A/G) and short-term treatment response to citalopram. Neuropsychobiology 52(3):155–162

    Article  CAS  PubMed  Google Scholar 

  74. Minov C, Baghai TC, Schüle C, Zwanzger P, Schwarz MJ, Zill P et al (2001) Serotonin-2A-receptor and -transporter polymorphisms: lack of association in patients with major depression. Neurosci Lett 303(2):119–122

    Article  CAS  PubMed  Google Scholar 

  75. Lee S-H, Lee K-J, Lee H-J, Ham B-J, Ryu S-H, Lee M-S (2005) Association between the 5-HT6 receptor C267T polymorphism and response to antidepressant treatment in major depressive disorder. Psychiatry Clin Neurosci 59(2):140–145

    Article  CAS  PubMed  Google Scholar 

  76. Wu WH, Huo SJ, Cheng CY, Hong CJ, Tsai SJ (2001) Association study of the 5-HT(6) receptor polymorphism (C267T) and symptomatology and antidepressant response in major depressive disorders. Neuropsychobiology 44(4):172–175

    Article  CAS  PubMed  Google Scholar 

  77. Serretti A, Zanardi R, Rossini D, Cusin C, Lilli R, Smeraldi E (2001) Influence of tryptophan hydroxylase and serotonin transporter genes on fluvoxamine antidepressant activity. Mol Psychiatry 6(5):586–592

    Article  CAS  PubMed  Google Scholar 

  78. Serretti A, Zanardi R, Cusin C, Rossini D, Lorenzi C, Smeraldi E (2001 Oct) Tryptophan hydroxylase gene associated with paroxetine antidepressant activity. Eur Neuropsychopharmacol 11(5):375–380

    Article  CAS  PubMed  Google Scholar 

  79. Serretti A, Zanardi R, Cusin C, Rossini D, Lilli R, Lorenzi C et al (2001) No association between dopamine D2 and D4 receptor gene variants and antidepressant activity of two selective serotonin reuptake inhibitors. Psychiatry Res 104(3):195–203

    Article  CAS  PubMed  Google Scholar 

  80. Garriock HA, Delgado P, Kling MA, Carpenter LL, Burke M, Burke WJ et al (2006) Number of risk genotypes is a risk factor for major depressive disorder: a case control study. Behav Brain Funct. 2:24

    Article  PubMed  PubMed Central  Google Scholar 

  81. Zill P, Baghai TC, Engel R, Zwanzger P, Schüle C, Minov C et al (2003) Beta-1-adrenergic receptor gene in major depression: Influence on antidepressant treatment response. Am J Med Genet B Neuropsychiatr Genet 120B(1):85–89

    Article  PubMed  Google Scholar 

  82. Crowley JJ, Lipsky RH, Lucki I, Berrettini WH (2008 Oct) Variation in the genes encoding vesicular monoamine transporter 2 and beta-1 adrenergic receptor and antidepressant treatment outcome. Psychiatr Genet 18(5):248–251

    Article  PubMed  Google Scholar 

  83. Zill P, Baghai TC, Zwanzger P, Schüle C, Minov C, Riedel M et al (2000) Evidence for an association between a G-protein beta3-gene variant with depression and response to antidepressant treatment. Neuroreport 11(9):1893–1897

    Article  CAS  PubMed  Google Scholar 

  84. Serretti A, Lorenzi C, Cusin C, Zanardi R, Lattuada E, Rossini D et al (2003) SSRIs antidepressant activity is influenced by G beta 3 variants. Eur Neuropsychopharmacol 13(2):117–122

    Article  CAS  PubMed  Google Scholar 

  85. Lee H-J, Cha J-H, Ham B-J, Han C-S, Kim Y-K, Lee S-H et al (2004) Association between a G-protein β3 subunit gene polymorphism and the symptomatology and treatment responses of major depressive disorders. Pharmacogenomics J 4(1):29–33

    Article  CAS  PubMed  Google Scholar 

  86. Keers R, Bonvicini C, Scassellati C, Uher R, Placentino A, Giovannini C et al (2011) Variation in GNB3 predicts response and adverse reactions to antidepressants. J Psychopharmacol (Oxford) 25(7):867–874

    Article  CAS  Google Scholar 

  87. Joyce PR, Mulder RT, Luty SE, McKenzie JM, Miller AL, Rogers GR et al (2003) Age-dependent antidepressant pharmacogenomics: polymorphisms of the serotonin transporter and G protein beta3 subunit as predictors of response to fluoxetine and nortriptyline. Int J Neuropsychopharmacol 6(4):339–346

    Article  CAS  PubMed  Google Scholar 

  88. Kang R-H, Hahn S-W, Choi M-J, Lee M-S (2007) Relationship between G-protein beta-3 subunit C825T polymorphism and mirtazapine responses in Korean patients with major depression. Neuropsychobiology. 56(1):1–5

    Article  CAS  PubMed  Google Scholar 

  89. Hong C-J, Chen T-J, YW-Y Y, Tsai S-J (2006) Response to fluoxetine and serotonin 1A receptor (C-1019G) polymorphism in Taiwan Chinese major depressive disorder. Pharmacogenomics J. 6(1):27–33

    Article  CAS  PubMed  Google Scholar 

  90. Tsai S-J, Cheng C-Y, YW-Y Y, Chen T-J, Hong C-J (2003) Association study of a brain-derived neurotrophic-factor genetic polymorphism and major depressive disorders, symptomatology, and antidepressant response. Am J Med Genet B Neuropsychiatr Genet 123B(1):19–22

    Article  PubMed  Google Scholar 

  91. Yoshida K, Higuchi H, Kamata M, Takahashi H, Inoue K, Suzuki T et al (2007) The G196A polymorphism of the brain-derived neurotrophic factor gene and the antidepressant effect of milnacipran and fluvoxamine. J Psychopharmacol (Oxford) 21(6):650–656

    Article  CAS  Google Scholar 

  92. Choi M-J, Kang R-H, Lim S-W, Oh K-S, Lee M-S (2006) Brain-derived neurotrophic factor gene polymorphism (Val66Met) and citalopram response in major depressive disorder. Brain Res. 1118(1):176–182

    Article  CAS  PubMed  Google Scholar 

  93. Holsboer F (2001) Stress, hypercortisolism and corticosteroid receptors in depression: implications for therapy. J Affect Disord 62(1):77–91

    Article  CAS  PubMed  Google Scholar 

  94. Crisafulli C, Fabbri C, Porcelli S, Drago A, Spina E, De Ronchi D et al (2011) Pharmacogenetics of antidepressants. Front Pharmacol 2:6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Tansey KE, Guipponi M, Hu X, Domenici E, Lewis G, Malafosse A et al (2013) Contribution of common genetic variants to antidepressant response. Biol Psychiatry 73(7):679–682

    Article  CAS  PubMed  Google Scholar 

  96. Brown L, Eum S, Haga SB, Strawn JR, Zierhut H (2020) Clinical utilization of pharmacogenetics in psychiatry – perspectives of pharmacists, genetic counselors, implementation science, clinicians, and industry. Pharmacopsychiatry 53(4):162–173

    Google Scholar 

  97. Winner JG, Carhart JM, Altar A, Allen JD, Prospective DBMA (2013) Randomized, double-blind study assessing the clinical impact of integrated pharmacogenomic testing for major depressive disorder. Discov Med 16(89):219–227

    PubMed  Google Scholar 

  98. Singh AB (2015) Improved ANTIDEPRESSANT REMISSION IN MAJOR DEPRESSION VIA A PHARMACOKINETIC PATHWAY POLYGENE PHARMACOGENETIC REPORT. Clin Psychopharmacol Neurosci. 13(2):150–156

    Article  PubMed  PubMed Central  Google Scholar 

  99. Elliott LS, Henderson JC, Neradilek MB, Moyer NA, Ashcraft KC, Thirumaran RK (2017) Clinical impact of pharmacogenetic profiling with a clinical decision support tool in polypharmacy home health patients: a prospective pilot randomized controlled trial. PLOS ONE 12(2):e0170905

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Pérez V, Salavert A, Espadaler J, Tuson M, Saiz-Ruiz J, Sáez-Navarro C et al (2017) Efficacy of prospective pharmacogenetic testing in the treatment of major depressive disorder: results of a randomized, double-blind clinical trial. BMC Psychiatry 17(1):250

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Bradley P, Shiekh M, Mehra V, Vrbicky K, Layle S, Olson MC et al (2018) Improved efficacy with targeted pharmacogenetic-guided treatment of patients with depression and anxiety: a randomized clinical trial demonstrating clinical utility. J Psychiatr Res 96:100–107

    Article  PubMed  Google Scholar 

  102. Gex-Fabry M, Eap CB, Oneda B, Gervasoni N, Aubry J-M, Bondolfi G et al (2008) CYP2D6 and ABCB1 genetic variability: influence on paroxetine plasma level and therapeutic response. Ther Drug Monitoring 30(4):474

    Article  CAS  Google Scholar 

  103. Kuo H-W, Liu SC, Tsou H-H, Liu S-W, Lin K-M, Lu S-C et al (2013) CYP1A2 genetic polymorphisms are associated with early antidepressant escitalopram metabolism and adverse reactions. Pharmacogenomics. 14(10):1191–1201

    Article  CAS  PubMed  Google Scholar 

  104. Ozbey G, Yucel B, Taycan SE, Kan D, Bodur NE, Arslan T et al (2014) ABCB1 C3435T polymorphism is associated with susceptibility to major depression, but not with a clinical response to citalopram in a Turkish population. Pharmacol Rep 66(2):235–238

    Article  CAS  PubMed  Google Scholar 

  105. Schatzberg AF, DeBattista C, Lazzeroni LC, Etkin A, Murphy GM, Williams LM (2015) ABCB1 genetic effects on antidepressant outcomes: a report from the iSPOT-D trial. Am J Psychiatry 172(8):751–759

    Article  PubMed  Google Scholar 

  106. Chang HH, Chou C-H, Yang YK, Lee IH, Chen PS (2015) Association between ABCB1 polymorphisms and antidepressant treatment response in Taiwanese major depressive patients. Clin Psychopharmacol Neurosci 13(3):250–255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Ozbey G, Celikel FC, Cumurcu BE, Kan D, Yucel B, Hasbek E et al (2017) Influence of ABCB1 polymorphisms and serum concentrations on venlafaxine response in patients with major depressive disorder. Nord J Psychiatry 71(3):230–237

    Article  PubMed  Google Scholar 

  108. Kraft JB, Peters EJ, Slager SL, Jenkins GD, Reinalda MS, McGrath PJ et al (2007) Analysis of association between the serotonin transporter and antidepressant response in a large clinical sample. Biol Psychiatry 61(6):734–742

    Article  CAS  PubMed  Google Scholar 

  109. Murphy GM, Hollander SB, Rodrigues HE, Kremer C, Schatzberg AF (2004 Nov) Effects of the serotonin transporter gene promoter polymorphism on mirtazapine and paroxetine efficacy and adverse events in geriatric major depression. Arch Gen Psychiatry. 61(11):1163–1169

    Article  CAS  PubMed  Google Scholar 

  110. Serretti A, Kato M, De Ronchi D, Kinoshita T (2007) Meta-analysis of serotonin transporter gene promoter polymorphism (5-HTTLPR) association with selective serotonin reuptake inhibitor efficacy in depressed patients. Mol Psychiatry. 12(3):247–257

    Article  CAS  PubMed  Google Scholar 

  111. Taylor MJ, Sen S, Bhagwagar Z (2010) Antidepressant response and the serotonin transporter gene-linked polymorphic region. Biol Psychiatry. 68(6):536–543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. YW-Y Y, Tsai S-J, Liou Y-J, Hong C-J, Chen T-J (2006) Association study of two serotonin 1A receptor gene polymorphisms and fluoxetine treatment response in Chinese major depressive disorders. Eur Neuropsychopharmacol. 16(7):498–503

    Article  CAS  Google Scholar 

  113. Yoshida K, Naito S, Takahashi H, Sato K, Ito K, Kamata M et al (2002) Monoamine oxidase: A gene polymorphism, tryptophan hydroxylase gene polymorphism and antidepressant response to fluvoxamine in Japanese patients with major depressive disorder. Prog Neuropsychopharmacol Biol Psychiatry. 26(7–8):1279–1283

    Article  CAS  PubMed  Google Scholar 

  114. Licinio J, O’Kirwan F, Irizarry K, Merriman B, Thakur S, Jepson R et al (2004) Association of a corticotropin-releasing hormone receptor 1 haplotype and antidepressant treatment response in Mexican-Americans. Mol Psychiatry 9(12):1075–1082

    Article  CAS  PubMed  Google Scholar 

  115. Lee H-Y, Kang R-H, Han S-W, Paik J-W, Chang HS, Jeong YJ et al (2009) Association of glucocorticoid receptor polymorphisms with the susceptibility to major depressive disorder and treatment responses in Korean depressive patients. Acta Neuropsychiatrica. 21(1):11–17

    Article  PubMed  Google Scholar 

  116. Nouraei H, Firouzabadi N, Mandegary A, Zomorrodian K, Bahramali E, Shayesteh MRH et al (2018) Glucocorticoid receptor genetic variants and response to fluoxetine in major depressive disorder. J Neuropsychiatry Clin Neurosci 30(1):45–50

    Article  PubMed  Google Scholar 

  117. van Rossum EFC, Binder EB, Majer M, Koper JW, Ising M, Modell S et al (2006) Polymorphisms of the glucocorticoid receptor gene and major depression. Biol Psychiatry 59(8):681–688

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel J. Müller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Islam, F., Gorbovskaya, I., Müller, D.J. (2021). Pharmacogenetic/Pharmacogenomic Tests for Treatment Prediction in Depression. In: Kim, YK. (eds) Major Depressive Disorder. Advances in Experimental Medicine and Biology, vol 1305. Springer, Singapore. https://doi.org/10.1007/978-981-33-6044-0_13

Download citation

Publish with us

Policies and ethics