Skip to main content
Log in

Protein Binding as a Primary Determinant of the Clinical Pharmacokinetic Properties of Non-Steroidal Anti-Inflammatory Drugs

  • Review Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Summary

The ability of a wide variety of anionic, cationic, and neutral drugs to bind in a reversible manner to plasma proteins has long been recognised. Non-steroidal anti-inflammatory drugs (NSAIDs) are distinguished as a class by the high degree to which they bind to plasma protein. Plasma protein binding properties are primary determinants of the pharmacokinetic properties of the NSAIDs. Theoretical relationships are reviewed in order to define quantitatively the impact of plasma protein binding on clearance, half-life, apparent volume of distribution, and the duration and intensity of pharmacological effect. The quantitative relationships governing competitive displacement binding interactions are also presented.

Experimental methods for in vitro and in vivo determination of the degree of plasma protein binding are discussed. The more common in vitro methods are equilibrium dialysis and ultrafiltration. Methods for characterising the degree of plasma protein binding in vivo consist of either measuring the concentration of drug at equilibrium in an implanted semipermeable vessel or measuring the relative drug concentrations in two body spaces with different protein content. Emphasis is given to the comparative advantages and disadvantages of experimental application of the various in vitro and in vivo methods.

Plasma protein binding is discussed as a determinant of the trans-synovial transport of NSAIDs. Trans-synovial transport of NSAIDs appears to be a diffusional process. Limited data in humans receiving ibuprofen, indomethacin, aspirin, carprofen, alclofenac, or diclofenac suggest that clearance of each of these NSAIDs from the synovium is slower than clearance from plasma.

The clinical data relevant to the relationship between plasma NSAID concentration and various measures of anti-inflammatory effect are reviewed. A positive correlation between plasma NSAID concentration and anti-inflammatory effect has been observed in only one study on naproxen and one study on piroxicam. In several other studies, the lack of concentration-response correlations is generally attributed to the relatively subjective, quantitatively inexact methods used to assess anti-inflammatory effect and analgesia in arthritic patients, as well as the substantial interpatient variabilities in the fraction of unbound NSAID and the unbound plasma NSAID concentration. In view of the generally poor correlation between concentration and therapeutic response, routine therapeutic monitoring of total plasma NSAID concentration is not recommended as a means of titrating individual dosages to the desired effect in each patient.

Clinical factors associated with altered plasma protein binding of NSAIDs are presented. Although competitive displacement by concurrent medications or endogenous displacers is discussed, the frequency of occurrence of clinically significant displacement interactions is apparently minimal due to avoidance of known interacting drug-drug combinations and careful monitoring of patient status. The effects of disease states on plasma protein binding of NSAIDs are considered, with particular attention to the effects of rheumatic disease, renal disease, nephrotic syndrome, and hepatic insufficiency.

Finally, the effects of pregnancy, age, and haemodialysis on plasma protein binding of NSAIDs are considered.

The clinical pharmacokinetic properties of future NSAIDs which emerge from the same chemical classes as currently available NSAIDs can be expected to be profoundly influenced by the extent and affinity of binding of the drugs to proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aarons LJ, Rowland M. Kinetics of drug displacement interactions. Journal of Pharmacokinetics and Biopharmaceutics 9: 181–190, 1981

    PubMed  CAS  Google Scholar 

  • Aarons LJ, Scnary WL, Rowland M. An in vitro study of drug displacement interactions: warfarin-salicylate and warfarinphenylbutazone. Journal of Pharmacy and Pharmacology 31: 322–330, 1979

    Article  PubMed  CAS  Google Scholar 

  • Aggeler PM, O’Reilly RA, Leong L, Kowitz PE. Potentiation of anticoagulant effect of warfarin by phenylbutazone. New England Journal of Medicine 276: 496–501, 1967

    Article  PubMed  CAS  Google Scholar 

  • Andreasen F. Protein binding of drugs in plasma from patients with acute renal failure. Acta Pharmacologica et Toxicologica 32: 417–429, 1973

    Article  PubMed  CAS  Google Scholar 

  • Anton AH. The relation between the binding of sulfonamides to albumin and their antibacterial efficacy. Journal of Pharmacology and Experimental Therapeutics 129: 282–290, 1960

    PubMed  CAS  Google Scholar 

  • Anttila M, Haataja M, Kasanen A. Pharmacokinetics of naproxen in subjects with normal and impaired renal function. European Journal of Clinical Pharmacology 18: 263–268, 1980

    Article  PubMed  CAS  Google Scholar 

  • Ayres JW, Weidler DJ, Sakmar E, Wagner JG. Linear and nonlinear assessment of tolmetin pharmacokinetics. Research Communications in Chemical Pathology and Pharmacology 17: 583–593, 1977

    PubMed  CAS  Google Scholar 

  • Baber N, Holliday LDC, Vanden Huevel WJA, Walker RW, Sibeon R, et al. Indomethacin in rheumatoid arthritis: clinical effects, pharmacokinetic and platelet studies in responders and non-responders. Annals of the Rheumatic Diseases 38: 128–137, 1979

    Article  PubMed  CAS  Google Scholar 

  • Baber JS, Sibeon RG, Laws E, Halliday L, Orme MLE, et al. Indomethacin in rheumatoid arthritis — comparison of oral and rectal dosing. British Journal of Clinical Pharmacology 10: 387–392, 1980

    PubMed  CAS  Google Scholar 

  • Ballantyne FC, Fleck A, Dick WC. Albumin metabolism in rheumatoid arthritis. Annals of the Rheumatic Diseases 30: 265–270, 1971

    Article  PubMed  CAS  Google Scholar 

  • Barza M. Factors affecting the intraocular penetration of antibiotics: the influence of route, inflammation, animal species and tissue pigmentation. Scandinavian Journal of Infectious Diseases 14 (Suppl.): 151–159, 1978

    PubMed  CAS  Google Scholar 

  • Bayne WF, Hwang SS. Effect of nonlinear protein binding on equilibration times for different initial conditions. Journal of Pharmaceutical Sciences 74: 120–123, 1985

    Article  PubMed  CAS  Google Scholar 

  • Behm HL, Wagner JG. Errors in interpretation of data from equilibrium dialysis protein binding experiments. Research Communications in Chemical Pathology and Pharmacology 26: 145–160, 1979

    PubMed  CAS  Google Scholar 

  • Behm HL, Wagner JG. Free fraction change with differing volume ratios in equilibrium dialysis: cases of non-linear drug-protein binding. Journal of Pharmacy and Pharmacology 33: 283–289, 1981

    Article  PubMed  CAS  Google Scholar 

  • Belpaire FM, Bogaert MG, Mussche MM. Influence of renal failure on the protein binding of drugs in animals and man. European Journal of Clinical Pharmacology 11: 27–32, 1977

    Article  PubMed  CAS  Google Scholar 

  • Bertilsson L, Braithwaite R, Tybring G, Garle M, Borga O. Techniques for plasma protein binding of demethylchlorimipramine. Clinical Pharmacology and Therapeutics 26: 265–271, 1979

    PubMed  CAS  Google Scholar 

  • Bird HA, Leatham PA, Lowe JR, Downie WW, Fowler PD, et al. A phenylbutazone dose-finding study in rheumatoid arthritis. European Journal of Clinical Pharmacology 24: 773–776, 1983

    Article  PubMed  CAS  Google Scholar 

  • Birke G, Liljedahl SO, Plantin LO, Wetterfers J. Albumin catabolism in burns and following surgical procedures. Acta Chirurgica Scandinavica 118: 353–366, 1959–1960

    Google Scholar 

  • Birke G, Liljedahl SO, Troell L. Studies on burns. Acta Chirurgica Scandinavica Suppl. 228, 1957

    Google Scholar 

  • Blaschke TF. Protein binding and kinetics of drugs in liver diseases. Clinical Pharmacokinetics 2: 32–44, 1977

    Article  PubMed  CAS  Google Scholar 

  • Blatt WF, Robinson SM, Bixler HJ. Membrane ultrafiltration — the diafiltration technique and its application to microsolute exchange and binding phenomena. Analytical Biochemistry 26: 151–173, 1968

    Article  PubMed  CAS  Google Scholar 

  • Bonati M, Kanto J, Tognoni G. Clinical pharmacokinetics of cerebrospinal fluid. Clinical Pharmacokinetics 7: 312–335, 1982

    Article  PubMed  CAS  Google Scholar 

  • Boobis S. Drug-protein interactions. Reviews on Drug Metabolism and Drug Interactions III: 195–225, 1981

    Google Scholar 

  • Boobis SW. Alteration of plasma albumin in relation to decreased drug binding in uremia. Clinical Pharmacology and Therapeutics 22: 147–153, 1977

    PubMed  CAS  Google Scholar 

  • Booker HE, Darcey B. Serum concentrations of free diphenylhydantoin and their relationship to clinical intoxication. Epilep-sia 14: 177–184, 1973

    Article  CAS  Google Scholar 

  • Borga O, Odar-Cederlof I, Ringberger VA, Norlin A. Protein binding of salicylate in uremic and normal plasma. Clinical Pharmacology and Therapeutics 20: 464–475, 1976

    PubMed  CAS  Google Scholar 

  • Brash AR, Hickey DE, Graham TP, Stahlman MT, Oates JA, et al. Pharmacokinetics of indomethacin in the neonate: relation of plasma indomethacin levels to response of ductus arteriosus. New England Journal of Medicine 305: 67–72, 1981

    Article  PubMed  CAS  Google Scholar 

  • Breuning KH, Gilfrich HJ, Meinertz T, Jahnchen, E. Pharmacokinetics of azapropazone following single oral and intravenous doses. Arzneimittel-Forschung 29: 971–972, 1979

    Google Scholar 

  • Breuning KH, Gilfrich HJ, Meinertz T, Jahnchen E. Disposition of azapropazone in chronic renal and hepatic failure. European Journal of Clinical Pharmacology 20: 147–155, 1981

    Article  Google Scholar 

  • Brodie B, Lowman E, Burns J, Lee P, Chenkin T, et al. Observations on the antirheumatic and physiologic effects of phenylbutazone and some comparisons with cortisone. American Journal of Medicine 16: 181–190, 1954

    Article  PubMed  CAS  Google Scholar 

  • Brogden RN, Heel RC, Speight TM, Avery GS. Piroxicam: a review of its pharmacological properties and therapeutic efficacy. Drugs 22: 165–187, 1981

    Article  PubMed  CAS  Google Scholar 

  • Brooks PM, Bell MA, Mason DI, Buchanan WW. Interactions of antirheumatic drugs. Agents and Actions 7 (Suppl. 1): 85–95, 1977

    Google Scholar 

  • Brown JR. Serum albumin: amino acid sequence. In Rosenoer et al. (Eds) pp. 27–51, Pergamon Press, Elmsford, NY, 1977

  • Buttner H, Portwich F. Bestimmung der binding von sulfonamiden an serumeiweib mit der ultrazentrifuge. Arzneimittel-Forschung 11: 1133–1137, 1961

    Google Scholar 

  • Campbell WG. Synovial fine structure and permeability after intraarticular nitrogen mustard. Archives of Pathology 85: 162–174, 1968

    PubMed  Google Scholar 

  • Capell HA, Konetschnik B, Glass RC. Anti-inflammatory analgesic drug responders and non-responders: a clinico-pharma-cological study of flurbiprofen. British Journal of Clinical Pharmacology 4: 623–624, 1977

    Article  PubMed  CAS  Google Scholar 

  • Casey AE, Gilbert FE, Gravlee JF, Downey EL. Low urea-nitrogen and elevated serum albumin in anxiety, neuroses and psychoses. Alabama Journal of Medical Sciences 8: 168–177, 1971

    PubMed  CAS  Google Scholar 

  • Chen RF. Removal of fatty acids from serum albumin by charcoal treatment. Journal of Biological Chemistry 242: 173–181, 1967

    PubMed  CAS  Google Scholar 

  • Chiccarelli FS, Eisner HJ, Van Lear GE. Metabolic and pharmacokinetic studies with fenbufen in man. Arzneimittel-Forschung 30: 728–735, 1980

    PubMed  CAS  Google Scholar 

  • Chignell CF. Protein binding. In Garrett & Hirtz (Eds) Drug fate and metabolism: methods and techniques. Vol. 1, pp. 187–228, Marcel Dekker, Inc., New York, 1978

    Google Scholar 

  • Chignell CF. Recent advances in methodology: spectroscopic techniques. Annals of the New York Academy of Sciences 226: 44–59, 1973

    Article  PubMed  CAS  Google Scholar 

  • Chignell CF. Physical methods for studying drug-protein binding. In Brodie & Gillette (Eds) Handbook of experimental pharmacology Vo. 28, pp. 187–212, Springer-Verlag, Berlin, 1971

    Google Scholar 

  • Chignell CF. Optical studies of drug protein complexes. II. Interaction of phenylbutazone and its analogues to human serum albumin. Molecular Pharmacology 5: 244–255, 1969

    PubMed  CAS  Google Scholar 

  • Chignell CF. Application of fluorescence spectroscopy to the study of drug-macromolecule interactions. In Chignell (Ed.) Vol. 2, pp. 34–61, Meredith Corporation, New York, 1972

  • Chisholm CD. The tissue cage model in the distribution of antibacterial agents. Scandinavian Journal of Infectious Disease 14 (Suppl.): 118–124, 1978

    CAS  Google Scholar 

  • Chou RC, Levy G. Effect of heparin or salicylate infusion on serum protein binding and on concentrations of phenytoin in serum, brain and cerebrospinal fluid of rats. Journal of Pharmacology and Experimental Therapeutics 210: 42–48, 1981

    Google Scholar 

  • Christensen SB, Reimann I, Henriksen O, Arnoldi CC. Experimental osteoarthritis in rabbit, a study of Xenon-133 washout rates from the synovial cavity. Acta Orthopaedica Scandinavica 53: 167–174, 1982

    Article  PubMed  CAS  Google Scholar 

  • Cochran TE, Good W. The distribution of immunoglobulins and albumin between maternal and cord serum at delivery. Journal of Obstetrics and Gynaecology of the British Commonwealth 81: 980–987, 1974

    Article  CAS  Google Scholar 

  • Colowick SP, Womack FC. Binding of diffusible molecules by macromolecules: rapid measurement by rate of dialysis. Journal of Biological Chemistry 244: 774–777, 1968

    Google Scholar 

  • Cooper PF, Wood GC. Protein binding of small molecules: new gel filtration method. Journal of Pharmacy and Pharmacology 20 (Suppl.): 150S–156S, 1968

    Article  PubMed  Google Scholar 

  • Cooper SA. New peripherally-acting oral analgesic agents. Annual Review of Pharmacology and Toxicology 23: 617–647, 1983

    Article  PubMed  CAS  Google Scholar 

  • Costello PB, Green FA, Jung CY. Aspirin survival in human blood modulated by the concentration of erythrocytes. Arthritis and Rheumatism 25: 32–37, 1982

    Article  PubMed  CAS  Google Scholar 

  • Craig WA, Evenson MA, Sarver XP, Wagnild JP. Correction of protein binding defect in uremic sera by charcoal treatment. Journal of Laboratory Clinical Medicine 87: 637–647, 1976

    CAS  Google Scholar 

  • Cressman WA, Wortham GF, Plostnieks J. Absorption and excretion of tolmetin in man. Clinical Pharmacology and Therapeutics 19: 224–233, 1976

    PubMed  CAS  Google Scholar 

  • Davison C. Protein binding. In LaDu et al. (Eds) Fundamentals of drug metabolism and drug disposition, pp. 63–75, Williams and Wilkins, Baltimore, 1971

    Google Scholar 

  • Day RO, Furst DE, Dromgoole SH, Kamm B, Roe R, et al. Relationship of serum naproxen concentration to efficacy in rheumatoid arthritis. Clinical Pharmacology and Therapeutics 31: 733–740, 1982

    Article  PubMed  CAS  Google Scholar 

  • Dean M, Stock B, Patterson RJ, Levy G. Serum protein binding of drugs during and after pregnancy in humans. Clinical Pharmacology and Therapeutics 28: 253–261, 1980

    Article  PubMed  CAS  Google Scholar 

  • Denko CW, Purser DB, Johnson RM. Amino acid composition of serum albumin in normal individuals and in patients with rheumatoid arthritis. Clinical Chemistry 16: 54–57, 1970

    PubMed  CAS  Google Scholar 

  • Deodhar SD, Dick WC, Hodgkinson R, Buchanan WW. Measurement of clinical response to anti-inflammatory drug therapy in rheumatoid arthritis. Quarterly Journal of Medicine 42: 387–401, 1973

    PubMed  CAS  Google Scholar 

  • Deodhar SD, O’Boyle PJ, Dick WC. Anion transport from the canine synovial cavity. Nature New Biology 231: 61–63, 1971

    Article  PubMed  CAS  Google Scholar 

  • Diem K, Lentner C (Eds). Documenta Geigy Scientific Tables p. 582, Geigy Pharmaceuticals, Ardsley, New York, 1970

    Google Scholar 

  • Dromgoole SH. The effects of hemodialysis on the binding capacity of albumin. Clinica Chimica Acta 46: 469–472, 1973

    Article  CAS  Google Scholar 

  • Dupont D, Dayer P, Balant L, Gorgia A, Fabre J. Variations interet intraindividuales du compartment du piroxicam: pharmacocinétique chez l’homme en bonne sante et chez le malade en insuffisance renale. Pharmaceutica Acta Helvetiae 57: 20–26, 1982

    PubMed  CAS  Google Scholar 

  • Eickenberg HU. What is interstitial fluid? Biochemical and physiological analysis of fluid obtained from tissue cages. Scandinavian Journal of Infectious Diseases 14 (Suppl.): 166–170, 1978

    PubMed  CAS  Google Scholar 

  • Ekstrand R, Alvan G, Orme MLE, Lewander R, Palmer L, et al. Double-blind dose-response study of indomethacin in rheumatoid arthritis. European Journal of Clinical Pharmacology 17: 437–442, 1980

    Article  PubMed  CAS  Google Scholar 

  • Emori HW, Champion GD, Bluestone R, Paulus HE. Simultaneous pharmacokinetics of indomethacin in serum and synovial fluid. Annals of Rheumatic Diseases 32: 433–435, 1973

    Article  CAS  Google Scholar 

  • Falchuck KH, Goetzl EJ, Kulka JP. Respiratory gases of synovial fluids: an approach to synovial tissue circulatory-metabolic imbalance in rheumatoid arthritis. American Journal of Medicine 49: 223–231, 1970

    Article  Google Scholar 

  • Farr M, Willis JV. Investigation of phenylbutazone in synovial fluid. Journal of International Medical Research 5 (Suppl.): 26–29, 1977

    PubMed  Google Scholar 

  • Farrell PC, Grib NL, Fry DL, Popovich RP, Broviac JW, et al. A comparison of in vitro and in vivo solute protein binding interactions in normal and uremic subjects. Transactions of the American Society of Artificial Internal Organs 18: 268–276, 1972

    Article  CAS  Google Scholar 

  • FDC Reports. Top 20 Products-1983 U.S. Retail Sales at Acquisition Cost. FDC Reports 46: 10, 1984

  • Fletcher JE, Spector AA. Alternative models for the analysis of drug-protein binding. Molecular Pharmacology 13: 387–399, 1977

    PubMed  CAS  Google Scholar 

  • Furst DE, Tozer TN, Melmon KL. Salicylate clearance, the resultant of protein binding and metabolism. Clinical Pharmacology and Therapeutics 26: 380–389, 1979

    PubMed  CAS  Google Scholar 

  • Giacomini KM, Abang A, Blaschke TF. Calculation of drug concentration in plasma after equilibrium dialysis. British Journal of Clinical Pharmacology 14: 752–754, 1982

    Article  PubMed  CAS  Google Scholar 

  • Giacomini KM, Swezey SE, Giacomini JC, Blaschke TF. Administration of heparin causes in vitro release of non-esterified fatty acids in human plasma. Life Sciences 27: 771–780, 1980

    Article  PubMed  CAS  Google Scholar 

  • Gibaldi M, Perrier D. Pharmacokinetics, pp. 216–217, 2nd ed. Marcel Dekker, Inc., New York, 1982

    Google Scholar 

  • Gillette JR. Factors affecting drug metabolism. Annals of the New York Academy of Sciences 179: 43–66, 1971

    Article  PubMed  CAS  Google Scholar 

  • Glaser M. Forty-fourth annual prescription survey. Drug Topics (April 18): 34–45, 1983

    Google Scholar 

  • Goldstein A. The interactions of drugs and plasma proteins. Pharmacological Reviews 1: 102–165, 1949

    Google Scholar 

  • Goldstein A, Aronow L, Kaiman SM. Principles of drug action: the basis of pharmacology, pp. 184–198, 2nd ed., John Wiley & Sons, New York, 1974

    Google Scholar 

  • Goldstein NP, Hill NC, McKenzie BF, McGuckin WF, Svien HJ. Quantitation of protein, glycoprotein and lipoproteins of cerebrospinal fluid. Medical Clinics of North America 44: 1053–1074, 1960

    PubMed  CAS  Google Scholar 

  • Grindel JM, Migdalof BH, Plostnieks J. Absorption and excretion of tolmetin in arthritic patients. Clinical Pharmacology and Therapeutics 26: 122–128, 1979

    PubMed  CAS  Google Scholar 

  • Gugler R, Azarnoff DL. Drug protein binding and the nephrotic syndrome. Clinical Pharmacokinetics 1: 25–35, 1976

    Article  PubMed  CAS  Google Scholar 

  • Gugler R, Shoeman DW, Huffman DH, Cohlmin JB, Azarnoff DL. Pharmacokinetics of drugs in patients with the nephrotic syndrome. Journal of Clinical Investigation 55: 1182–1189, 1975

    Article  PubMed  CAS  Google Scholar 

  • Guyton AC. A concept of negative interstitial pressure based on pressures in implanted perforated capsules. Circulation Research 12: 399–414, 1963

    Article  PubMed  CAS  Google Scholar 

  • Guyton AC. Textbook of medical physiology, p. 424, Saunders Publishing Co., Philadelphia, 1976

    Google Scholar 

  • Gwilt PR, Perrier D. Plasma protein binding and distribution characteristics of drugs as indices of their hemodialyzability. Clinical Pharmacology and Therapeutics 24: 154–161, 1978

    PubMed  CAS  Google Scholar 

  • Hadler NM. The biology of the extracellular space. Clinics in Rheumatic Diseases 7: 71–97, 1981

    Google Scholar 

  • Hall S, Rowland M. Relationship between renal clearance, protein binding and urine flow for digitoxin, a compound of low clearance in the isolated perfused rat kidney. Journal of Pharmacology and Experimental Therapeutics 227: 174–179, 1983

    Google Scholar 

  • Hamar G, Levy G. Factors affecting the serum protein binding of salicylic acid in newborn infants and their mothers. Pediatric Pharmacology 1: 31–43, 1980

    PubMed  CAS  Google Scholar 

  • Hart FD. Anti-inflammatory agents in the treatment of the rheumatic disorders. Drugs 2: 411–415, 1971

    Article  PubMed  CAS  Google Scholar 

  • Hart FD, Huskisson EC. Non-steroidal anti-inflammatory drugs: current status and rational therapeutic use. Drugs 27: 232–255, 1984

    Article  PubMed  CAS  Google Scholar 

  • Honore B, Brodersen R. Albumin binding of anti-inflammatory drugs. Utility of a site-oriented versus a stoichiometric analysis. Molecular Pharmacology 25: 137–150, 1984

    PubMed  CAS  Google Scholar 

  • Hummel JP, Dreyer WJ. Measurement of protein-binding phenomena by gel filtration. Biochimica Biophysica Acta 63: 530–532, 1962

    Article  CAS  Google Scholar 

  • Huskisson EC, Scott PJ, Boyle S, Patrick M. Flurbiprofen at night. Current Medical Research and Opinion 5: 85–87, 1977

    Article  PubMed  CAS  Google Scholar 

  • Jansen W. Effect of piroxicam on renal function in geriatric patients with osteoarthritis. Proceedings of the 15th International Congress of Rheumatology, Paris, pp. 37–42, 1981

  • Jenner P, Testa B. Altered drug disposition in disease states: the first pieces of the jigsaw. In Jenner & Testa (Eds) Concepts in drug metabolism, Part B, pp. 423–513, Marcel Dekker, Inc., New York, 1981

    Google Scholar 

  • Jusko WJ. Pharmacokinetics in disease states changing protein binding. In Benet (Ed.) The effects of disease states on drug pharmacokinetics, pp. 99–124, American Pharmaceutical Association, Wshington, DC, 1976

    Google Scholar 

  • Jusko WJ, Gretch M. Plasma and tissue protein binding of drugs in pharmacokinetics. Drug Metabolism Reviews 5: 43–140, 1976

    Article  CAS  Google Scholar 

  • Jusko WJ, Gibaldi M. Effects of changes in elimination on various parameters of the two-compartment open model. Journal of Pharmaceutical Sciences 61: 1270–1273, 1972

    Article  PubMed  CAS  Google Scholar 

  • Keen P. Effect of binding to plasma proteins on the distribution, activity, and elimination of drugs. In Brodie and Gillette (Eds) Concepts in biochemical pharmacology, Part I, pp. 213–233, Springer-Verlag, New York, 1971

    Chapter  Google Scholar 

  • Keen PM. The binding of three penicillins in the plasma of several mammalian species as studied by ultrafiltration at body temperature. British Journal of Pharmacology and Chemotherapy 25: 507–514, 1965

    PubMed  CAS  Google Scholar 

  • Klotz IM. Protein interactions with small molecules. Accounts of Chemical Research 7: 162–168, 1974

    Article  CAS  Google Scholar 

  • Klotz IM, Walker FM, Pivan RB. Binding of organic ions by proteins. Journal of the American Chemical Society 68: 1486–1490, 1946

    Article  PubMed  CAS  Google Scholar 

  • Kohler G, Mohing W. Zur kinetic von diclofenac-Na in plasma und synovialflussigkeit. Acta Rheumatologica 5: 151–155, 1980

    Google Scholar 

  • Kramer B, Kramer F, Hytten FE. Drug disposition and pharmacokinetics in the maternal-fetal unit. Pharmacology and Therapeutics 10: 301–328, 1980

    Article  Google Scholar 

  • Kunin CM, Craig WA, Kornguth M, Monson R. Influence of binding on the pharmacologic activity of antibiotics. Annals of the New York Academy of Sciences 226: 214–224, 1973

    Article  PubMed  CAS  Google Scholar 

  • Kunin CM, Dornbush AC, Finland M. Distribution and excretion of four tetracycline analogues in normal young men. Journal of Clinical Investigation 38: 1950–1963, 1959

    Article  PubMed  CAS  Google Scholar 

  • Kurz H, Fichtl B. Binding of drugs to tissues. Drug Metabolism Reviews 14: 467–510, 1983

    Article  PubMed  CAS  Google Scholar 

  • Kurz H, Trunk H, Weitz B. Evaluation of methods to determine protein-binding of drugs: equilibrium dialysis, ultrafiltration, ultracentrifugation, gel filtration. Arzneimittel-Forschung 27: 1373–1380, 1977

    PubMed  CAS  Google Scholar 

  • Kushner I, Somerville JA. Permeability of human synovial membrane to plasma proteins: relationship to molecular size and inflammation. Arthritis and Rheumatism 14: 560–570, 1971

    Article  PubMed  CAS  Google Scholar 

  • Laine VA, Penn RG, Patiala H, Sibelius R. The passage of benorylate into the synovial fluid and tissue of rheumatoid patients. Scandinavian Journal of Rheumatology 13 (Suppl.): 18–20, 1975

    PubMed  CAS  Google Scholar 

  • Leary WP, Howlett M, Botha J. Investigation of diflunisal intoxication in baboons. Proceedings of the Third World Congress on Pain, Edinburgh, pp. 26–31, 1981

  • Lee EJD, Williams K, Day R, Graham G, Champion D. Stereoselective disposition of ibuprofen enantiomers in man. British Journal of Clinical Pharmacology 19: 669–674, 1985

    Article  PubMed  CAS  Google Scholar 

  • Levy G. Effect of plasma protein binding of drugs on duration and intensity of pharmacological activity. Journal of Pharmaceutical Sciences 65: 1264–1265, 1976

    Article  PubMed  CAS  Google Scholar 

  • Levy G, Procknal JA, Garrettson LK. Distribution of salicylate between neonatal and maternal serum at diffusion equilibrium. Clinical Pharmacology and Therapeutics 18: 210–214, 1975

    PubMed  CAS  Google Scholar 

  • Levy G, Yacobi A. Effect of plasma protein binding on elimination of warfarin. Journal of Pharmaceutical Sciences 63: 805–806, 1974

    Article  PubMed  CAS  Google Scholar 

  • Lewis JH. Hepatic toxicity of nonsteroidal anti-inflammatory drugs. Clinical Pharmacy 3: 128–138, 1984

    PubMed  CAS  Google Scholar 

  • Lewis RJ, Trager WF, Chan KK, Breckenridge A, Orme M, et al. Warfarin: stereochemical aspects of its metabolism and the interaction with phenylbutazone. Journal of Clinical Investigation 53: 1607–1617, 1974

    Article  PubMed  CAS  Google Scholar 

  • Lima JJ, MacKichan JJ, Libertin N, Sabino J. Influence of volume shifts on drug binding during equilibrium dialysis: correction and attenuation. Journal of Pharmacokinetics and Biopharmaceutics 11: 483–498, 1983

    PubMed  CAS  Google Scholar 

  • Lin JH, Hooke KF, Yeh KC, Duggan DE. Dose-dependent pharmacokinetics of diflunisal in rats: dual effects of protein binding and metabolism. Journal of Pharmacology and Experimental Therapeutics 235: 402–406, 1985a

    PubMed  CAS  Google Scholar 

  • Lin JH, Ulm EH, Duggan DE. Possible mechanism for reduced plasma clearance of diflunisal in rat experimental renal failure. Journal of Pharmacology and Experimental Therapeutics, in press, 1986

    Google Scholar 

  • Lin JH, Yeh KC, Duggan DE. Effect of uremia and anephric state on the pharmacokinetics of sulindac and its metabolites in rats. I: An application of pharmacokinetic model for reversible metabolism. Drug Metabolism and Disposition 13: 602–607, 1985b

    PubMed  CAS  Google Scholar 

  • Lindup WE. Drug-albumin binding. Biochemical Society Transactions 3: 635–640, 1975

    PubMed  CAS  Google Scholar 

  • Lockwood GF, Albert KS, Szpunar GJ, Wagner JG. Pharmacokinetics of ibuprofen in man — III: plasma protein binding. Journal of Pharmacokinetics and Biopharmaceutics 11: 469–482, 1983

    PubMed  CAS  Google Scholar 

  • Lockwood GF, Wagner JG. Plasma volume changes as a result of equilibrium dialysis. Journal of Pharmacy and Pharmacology 35: 387–388, 1983

    Article  PubMed  CAS  Google Scholar 

  • Lowenthal DT, Briggs WA, Levy G. Kinetics of salicylate elimination by anephric patients. Journal of Clinical Investigation 54: 1221–1226, 1974

    Article  PubMed  CAS  Google Scholar 

  • Makela AL, Lempiainen M, Ylijok H. Ibuprofen levels in serum and synovial fluid. Scandinavian Journal of Rheumatology 39 (Suppl.): 15–17, 1981

    Article  PubMed  CAS  Google Scholar 

  • Mason RW, McQueen EG. Protein binding of indomethacin: binding of indomethacin to human plasma albumin and its displacement from binding by ibuprofen, phenylbutazone and salicylate in vitro. Pharmacology 12: 12–19, 1974

    Article  PubMed  CAS  Google Scholar 

  • McDevitt DG, Frisk-Holmberg M, Hollifield JW, Shand DG. Plasma protein binding and the affinity of propranolol for a β-receptor in man. Clinical Pharmacology and Therapeutics 20: 152–157, 1976

    PubMed  CAS  Google Scholar 

  • McElnay JC, D’Arcy PF. Interaction between azapropazone and warfarin. British Medical Journal 2: 773–774, 1977

    Article  PubMed  CAS  Google Scholar 

  • McElnay JC, D’Arcy PF. An in vitro model of drug/drug interaction at albumin binding sites. Journal of Pharmacological Methods 2: 315–321, 1979

    Article  CAS  Google Scholar 

  • McElnay JC, D’Arcy PF. Displacement of albumin-bound warfarin by anti-inflammatory agents in vitro. Journal of Pharmacy and Pharmacology 32: 709–711, 1980

    Article  PubMed  CAS  Google Scholar 

  • McElnay JC, D’Arcy PF. Protein binding displacement interactions and their clinical importance. Drugs 25: 495–513, 1983

    Article  PubMed  CAS  Google Scholar 

  • McMenamy RH, Oncley JL. The specific binding of L-tryptophan to serum albumin. Journal of Biological Chemistry 233: 1436–1447, 1958

    PubMed  CAS  Google Scholar 

  • McNamara PJ, Bogardus JB. Effect of initial conditions and drug-protein binding on the time to equilibrium in dialysis systems. Journal of Pharmaceutical Sciences 71: 1066–1068, 1982

    Article  PubMed  CAS  Google Scholar 

  • McQueen EG. Comparison of tissue fluid and plasma concentrations of a protein-bound drug sulphamethoxine by in vivo dialysis in rats. British Journal of Pharmacology and Chemotherapy 33: 312–318, 1968

    PubMed  CAS  Google Scholar 

  • Meffin PJ, Robert EW, Winkle RA, Harapat S, Peters FA, et al. Role of concentration-dependent plasma protein binding in disopyramide disposition. Journal of Pharmacokinetics and Biopharmaceutics 7: 29–46, 1979

    PubMed  CAS  Google Scholar 

  • Meyer MC, Guttman DE. The binding of drugs by plasma proteins. Journal of Pharmaceutical Sciences 57: 895–918, 1968

    Article  PubMed  CAS  Google Scholar 

  • Meyer MC, Guttman DE. Dynamic dialysis as a method for studying protein binding I: factors affecting the kinetics of dialysis through a cellophane membrane. Journal of Pharmaceutical Sciences 59: 33–38, 1970a

    Article  PubMed  CAS  Google Scholar 

  • Meyer MC, Guttman DE. Dynamic dialysis as a method for studying protein binding II: evaluation of the method with a number of binding systems. Journal of Pharmaceutical Sciences 59: 39–48, 1970b

    Article  PubMed  CAS  Google Scholar 

  • Miller DR. Combination use of nonsteroidal anti-inflammatory drugs. Drug Intelligence and Clinical Pharmacy 15: 3–7, 1981

    PubMed  CAS  Google Scholar 

  • Nakano NI, Oshio T, Fujimoto Y, Amiya T. Study of drug-protein binding by affinity chromatography: interaction of bovine serum albumin and salicylic acid. Journal of Pharmaceutical Sciences 67: 1005–1008, 1978

    Article  PubMed  CAS  Google Scholar 

  • Øie S, Guentert TW. Comparison of equilibrium times in dialysis experiments using spiked plasma or spiked buffer. Journal of Pharmaceutical Science 71: 127–128, 1982

    Article  Google Scholar 

  • Øie S, Guentert TW, Tozer TN. Effect of saturable binding on the pharmacokinetics of drugs: a simulation. Journal of Pharmacy and Pharmacology 32: 471–477, 1980

    Article  PubMed  Google Scholar 

  • Øie S, Tozer TN. Effects of altered plasma protein binding on apparent volume of distribution. Journal of Pharmaceutical Sciences 68: 1203–1205, 1979

    Article  PubMed  Google Scholar 

  • O’Reilly RA. Interaction of several coumarin compounds with human and canine plasma albumin. Molecular Pharmacology 7: 209–218, 1971

    PubMed  Google Scholar 

  • O’Reilly RA, Trager WF, Motley CH, Howald W. Stereoselective interaction of phenylbutazone with [12C/13C] warfarin psesudoracemates in man. J Clin Invest 65: 746–753, 1980

    Article  PubMed  Google Scholar 

  • Orme MLE. Plasma concentrations and therapeutic effect of anti-inflammatory and anti-rheumatic drugs. Pharmacology and Therapeutics 16: 167–180, 1982

    Article  PubMed  CAS  Google Scholar 

  • Orme MLE, Baber NS, Halliday L, Sibeon RG, Littler TR. Flurbiprofen and indomethacin in rheumatoid arthritis: studies in responders and non-responders. British Journal of Clinical Practice 9 (Suppl.): 36–42, 1980

    Google Scholar 

  • Orme MLE, Baber NS, Keenan JP, Halliday L, Sibeon RG, et al. Pharmacokinetics and biochemical effects in responders and non-responders to non-steroidal anti-inflammatory drugs. Scandinavian Journal of Rheumatology 39 (Suppl.): 19–27, 1981

    Article  PubMed  CAS  Google Scholar 

  • Orme MLE, Holt PJL, Hughes GRV, Bulpitt CJ, Draffan GH, et al. Plasma concentration of phenylbutazone and its therapeutic effect — studies in patients with rheumatoid arthritis. British Journal of Clinical Pharmacology 3: 185–191, 1976

    Article  PubMed  CAS  Google Scholar 

  • Paulus HE, Siegel M, Morgan E, Okun R, Calabro JJ. Variations of serum concentrations and half-life of salicylate in patients with rheumatoid arthritis. Arthritis and Rheumatism 14: 527–532, 1971

    Article  PubMed  CAS  Google Scholar 

  • Perrin JH. A circular dichroic investigation of the binding of fenoprofen, 2(3-phenoxyphenyl)-propionic acid, to human serum albumin. Journal of Pharmacy and Pharmacology 25: 208–212, 1973

    Article  PubMed  CAS  Google Scholar 

  • Physicians’ Desk Reference (40th ed.). Medical Economics Co, Oradell, NJ, 1986

  • Porter RS. Factors determining efficacy of NSAIDS. Drug Intelligence and Clinical Pharmacy 18: 42–51, 1984

    PubMed  CAS  Google Scholar 

  • Potter GD, Guy GL. A micro method for analysis of plasma salicylate. Proceedings of the Society for Experimental Biology and Medicine 116: 658–660, 1964

    PubMed  CAS  Google Scholar 

  • Powell-Jackson PR. Interaction between azapropazone and warfarin. British Medical Journal 1: 1193–1194, 1977

    Article  PubMed  CAS  Google Scholar 

  • Powis G. The binding of catecholamines to human serum proteins. Biochemical Pharmacology 24: 707–712, 1975

    Article  PubMed  CAS  Google Scholar 

  • Prandota J, Pruitt AW. Furosemide binding to human albumin and plasma of nephrotic children. Clinical Pharmacology and Therapeutics 17: 159–166, 1975

    PubMed  CAS  Google Scholar 

  • Rall DP. Drug entry into brain and cerebrospinal fluid. In LaDu et al. (Eds) Fundamentals of drug metabolism and drug disposition, pp. 76–87, Williams and Wilkins Co., Baltimore, 1971

    Google Scholar 

  • Ray JE, Wade DN, Graham GG, Day RO. Pharmacokinetics of carprofen in plasma and synovial fluid. Journal of Clinical Pharmacology 19: 635–643, 1979

    PubMed  CAS  Google Scholar 

  • Rehberg PB. A centrifugation method of ultrafiltration using cellophane tubes. Acta Physiologica Scandinavica 5: 305–310, 1943

    Article  CAS  Google Scholar 

  • Reidenberg MM, Affrime M. Influence of disease on binding of drugs to plasma proteins. Annals of the New York Academy of Sciences 226: 115–126, 1973

    Article  PubMed  CAS  Google Scholar 

  • Richards EG, Schachman HK. A differential ultracentrifuge technique for measuring small changes in sedimentation coefficients. Journal of the American Chemical Society 79: 5324–5325, 1957

    Article  CAS  Google Scholar 

  • Riess W, Stierlin H, Degen P, Faigle JW, Gerardin A, et al. Pharmacokinetics and metabolism of the anti-inflammatory agent Voltaren. Scand J Rheumatol 22 (Suppl.): 17–29, 1978

    Article  CAS  Google Scholar 

  • Risdall PC, Adams SS, Crampton EL, Marchant B. The disposition and metabolism of flurbiprofen in several species including man. Xenobiotica 8: 691–704, 1978

    Article  PubMed  CAS  Google Scholar 

  • Rogers HJ, Spector RG, Morrison PJ, Bradbrook ID. Comparative steady state pharmacokinetic study of piroxicam and flurbiprofen in normal subjects. European Journal of Rheumatology 4: 303–308, 1981

    CAS  Google Scholar 

  • Rosen A. The measurement of binding constants using circular dichroism. Binding of phenylbutazone and oxyphenylbutazone. Biochemical Pharmacology 19: 2075–2081, 1970

    Article  PubMed  CAS  Google Scholar 

  • Rowland M, Matin SB. Kinetics of drug-drug interactions. Journal of Pharmacokinetics and Biopharmaceutics 1: 553–567, 1973

    CAS  Google Scholar 

  • Rowland M, Tozer TN. Clinical pharmacokinetics: concepts and applications, p. 287, Lea and Febiger, Inc., Philadelphia, 1980

    Google Scholar 

  • Rowland M. Plasma protein binding and therapeutic drug monitoring. Therapeutic Drug Monitoring 2: 29–37, 1980

    Article  PubMed  CAS  Google Scholar 

  • Rowland M, Benet LZ, Graham GG. Clearance concepts in pharmacokinetics. Journal of Pharmacokinetics and Biopharmaceutics 1: 123–136, 1973

    PubMed  CAS  Google Scholar 

  • Rubin A, Warrick P, Wolen RL, Chernish SM, Ridolfo AS, et al. Physiological disposition of fenoprofen in man. III. Metabolism and protein binding of fenoprofen. Journal of Pharmacology and Experimental Therapeutics 183: 449–457, 1972

    PubMed  CAS  Google Scholar 

  • Runkel R, Chaplin M, Sevelius H, Ortega E, Segre E. Pharmacokinetics of naproxen overdose. Clinical Pharmacology and Therapeutics 20: 269–277, 1976

    PubMed  CAS  Google Scholar 

  • Runkel R, Forchielli E, Sevelius H, Chaplin M, Segre E. Nonlinear plasma level response to high doses of naproxen. Clinical Pharmacology and Therapeutics 15: 261–266, 1974

    PubMed  CAS  Google Scholar 

  • Scatchard G. The attraction of proteins for small molecules and ions. Ann NY Acad Sci 51: 660–692, 1949

    Article  CAS  Google Scholar 

  • Scnary WL, Aarons LJ, Rowland M. Representation and interpretation of drug displacement interactions. Biochemical Pharmacology 27: 139–144, 1978

    Article  Google Scholar 

  • Scnary WL, Rowland M. Protein binding and hepatic clearance: studies with tolbutamide, a drug of low intrinsic clearance, in the isolated perfused rat liver preparation. Journal of Pharmacokinetics and Biopharmaceutics 11: 225–243, 1983

    Google Scholar 

  • Segel I. Enzyme Kinetics, pp. 100–124, John Wiley & Sons, Inc., New York, 1975

    Google Scholar 

  • Selley ML, Modson BW, Thomas J. Protein binding of tolmetin. Clinical Pharmacology and Therapeutics 24: 694–705, 1978

    PubMed  CAS  Google Scholar 

  • Serlin MJ, Breckenridge AM. Drug interactions with warfarin. Drugs 25: 610–620, 1983

    Article  PubMed  CAS  Google Scholar 

  • Serlin MJ, Mossman S, Sibeon RG, Tempero KF, Breckenridge AM. Interaction between diflunisal and warfarin. Clinical Pharmacology and Therapeutics 28: 493–498, 1980

    Article  PubMed  CAS  Google Scholar 

  • Sevelius H, Runkel R, Segre E, Bloomfield SS. Bioavailability of naproxen sodium and its relationship to clinical analgesic effects. Br J Clin Pharmacol 10: 250–263, 1980

    Article  Google Scholar 

  • Shah VP, Wallace SM, Riegelman S. Microultrafiltration technique for drug protein binding determination in plasma. Journal of Pharmaceutical Sciences 63: 1364–1367, 1974

    Article  PubMed  CAS  Google Scholar 

  • Sham-Eldeen MA, Vallner JJ, Needham TE. Interaction of sulindac and metabolites with human albumin. Journal of Pharmaceutical Sciences 67: 1077–1080, 1978

    Article  Google Scholar 

  • Shoeman DW, Azarnoff DL. Diphenylhydantoin potency and plasma protein binding. Journal of Pharmacology and Experimental Therapeutics 195: 84–86, 1975

    PubMed  CAS  Google Scholar 

  • Sholkoff SD, Eyring EJ, Rowland M, Riegelman S. Plasma and synovial fluid concentrations of aspirin in patients with rheumatoid arthritis. Arthritis and Rheumatism 10: 348–351, 1967

    Article  PubMed  CAS  Google Scholar 

  • Siegmeth W. Serumkonzentrationen von piroxicam in beziehung zur klinischen Wirkung bei patienten mit chronischer polyarthritis. Wiener Medizinische Wochenschrift, pp. 31–36, 1980

    Google Scholar 

  • Simkin PA. Synovial permeability in rheumatoid arthritis. Arthritis and Rheumatism 22: 689–696, 1979

    Article  PubMed  CAS  Google Scholar 

  • Simkin PA, Nilson KL. Trans-synovial exchange of large and small molecules. Clinics in Rheumatic Diseases 7: 99–129, 1981

    Google Scholar 

  • Simkin PA, Pizzorno JE. Transynovial exchange of small molecules in normal human subjects. Journal of Applied Physiology 36: 581–587, 1974

    PubMed  CAS  Google Scholar 

  • Sjoholm I, Ekman B, Kober A, Ljungstedt-Pahlman I, Sciving B, et al. Binding of drugs to human serum albumin: XI. The specificity of three binding sites as studied with albumin immobilized in microparticles. Mol Pharmacol 16: 767–777, 1979

    PubMed  CAS  Google Scholar 

  • Sjoholm I, Kober A, Odar-Cederlof I, Borga O. Protein binding of drugs in uremic and normal serum: the role of endogenous binding inhibitors. Biochem Pharmacol 25: 1205–1213, 1976

    Article  PubMed  CAS  Google Scholar 

  • Slattery JT, Levy G, Jain A, McMahon FG. Effect of naproxen on the kinetics of elimination and anticoagulant activity of a single dose of warfarin. Clinical Pharmacology and Therapeutics 25: 51–60, 1979

    PubMed  CAS  Google Scholar 

  • Soberman R, Brodie BB, Levy BB, Axelrod J, Hollander V, et al. The use of antipyrine in the measurement of total body water in man. Journal of Biological Chemistry 179: 31–42, 1942

    Google Scholar 

  • Solomon HM, Schrogie JJ, Williams D. The displacement of phenylbutazone-14C and warfarin-14C from human albumin by various drugs and fatty acids. Biochemical Pharmacology 17: 143–151, 1968

    Article  PubMed  CAS  Google Scholar 

  • Spector R, Korkin DT, Lorenzo AV. A rapid method for the determination of salicylate binding by use of ultrafilters. Journal of Pharmacy and Pharmacology 24: 786–789, 1972

    Article  PubMed  CAS  Google Scholar 

  • Sudlow G, Birkett DJ, Wade DN. The characterization of two specific binding sites on human serum albumin. Molecular Pharmacology 11: 824–832, 1975

    PubMed  CAS  Google Scholar 

  • Sudlow G, Birkett DJ, Wade DN. Further characterization of specific drug binding sites on human serum albumin. Molecular Pharmacology 12: 1052–1061, 1976

    PubMed  CAS  Google Scholar 

  • Tempero KF, Cirillo VJ, Steelman SL. Diflunisal: a review of pharmacokinetic and pharmacodynamic properties, drug interactions, and special tolerability studies in humans. British Journal of Clinical Pharmacology 4: 31S–36S, 1977

    Article  PubMed  Google Scholar 

  • Thomas GM, Rees P, Dippy JE, Maddock J. Simultaneous pharmacokinetics of alcofenac in plasma and synovial fluid in patients with rheumatoid arthritis. Current Medical Research and Opinion 3: 264–267, 1975

    Article  PubMed  CAS  Google Scholar 

  • Tillement JP, Lhoste F, Giudicelli JF. Diseases and drug protein binding. Clinical Pharmacokinetics 3: 144–154, 1978

    Article  PubMed  CAS  Google Scholar 

  • Toon S, Trager WF. Stereochemical aspects of drug-protein binding: the warfarin-sulfinpyrazone interaction. Second World Conference on Clinical Pharmacology and Therapeutics, Washington, DC, August 1983

  • Toon S, Trager WF. Pharmacokinetic implications of stereoselective changes in plasma-protein binding: warfarin-sulfinpyrazone. Journal of Pharmaceutical Sciences 73: 1671–1673, 1984

    Article  PubMed  CAS  Google Scholar 

  • Toribara TY. Centrifuge type of ultrafiltration apparatus. Analytical Chemistry 25: 1286, 1953

    Article  CAS  Google Scholar 

  • Tozer TN. Concepts basic to pharmacokinetics. Pharmacology and Therapeutics 12: 109–131, 1981

    Article  PubMed  CAS  Google Scholar 

  • Tozer TN. Implications of altered plasma protein binding in disease states. In Benet et al. (Eds) Pharmacokinetic basis for drug treatment, pp. 173–193, Raven Press, New York, 1984

    Google Scholar 

  • Trenk D, Jahnchen E. Effect of serum protein binding on pharmacokinetics and anticoagulant activity of phenprocoumon in rats. J Pharmacokinet Biopharm 8: 177–191, 1980

    PubMed  CAS  Google Scholar 

  • Trnavska J, Trnavsky K. Characterization of salicylate binding to synovial fluid and plasma proteins in patients with rheumatoid arthritis. Eur J Clin Pharmacol 18: 403–406, 1980

    Article  PubMed  CAS  Google Scholar 

  • Trnavska Z, Trnavsky K, Zlnay D. Binding of piroxicam to synovial fluid and plasma proteins in patients with rheumatoid arthritis. Eur J Clin Pharmacol 26: 457–461, 1984

    Article  PubMed  CAS  Google Scholar 

  • Vallner JJ. Binding of drugs by albumin and plasma proteins. Journal of Pharmaceutical Sciences 66: 447–465, 1977

    Article  PubMed  CAS  Google Scholar 

  • Verbeeck R, Blackburn JL, Loewen GR. Clinical pharmacokinetics of non-steroidal anti-inflammatory drugs. Clinical Pharmacokinetics 8: 297–331, 1983

    Article  PubMed  CAS  Google Scholar 

  • Verbeeck RK, Boel A, Buntinx A, De Schepper PJ. Plasma protein binding and interaction studies with diflunisal, a new salicylate analgesic. Biochemical Pharmacology 29: 571–576, 1980

    Article  PubMed  CAS  Google Scholar 

  • Verbeeck RK, De Schepper PJ. Influence of chronic renal failure and hemodialysis on diflunisal protein binding. Clinical Pharmacology and Therapeutics 27: 628–635, 1980

    Article  PubMed  CAS  Google Scholar 

  • Verbeeck R, Tjandramaga TB, Mullie A, Verbesselt R, Verberckmoes R, et al. Biotransformation of diflunisal and renal excretion of its glucuronides in renal insufficiency. British Journal of Clinical Pharmacology 7: 273–282, 1979

    Article  PubMed  CAS  Google Scholar 

  • Vesell ES, Passananti GT, Johnson AO. Failure of indomethacin and warfarin to interact in normal human volunteers. Journal of Clinical Pharmacology 15: 486–495, 1975

    PubMed  CAS  Google Scholar 

  • Wagner JG, Northam JI, Alway DC, Carpenter OS. Blood levels of drug at the equilibrium state after multiple dosing. Nature 207: 1301–1302, 1965

    Article  PubMed  CAS  Google Scholar 

  • Wallace A. Altered plasma albumin in the newborn infant. British Journal of Clinical Pharmacology 4: 82–85, 1977

    Article  PubMed  CAS  Google Scholar 

  • Wallace S, Whiting B, Runcie J. Factors affecting drug binding in plasma of elderly patients. British Journal of Clinical Pharmacology 3: 327–330, 1976

    Article  PubMed  CAS  Google Scholar 

  • Wallis WJ, Simkin PA. Antirheumatic drug concentrations in human synovial fluid and synovial tissue: observations on extravascular pharmacokinetics. Clinical Pharmacokinetics 8: 496–522, 1983

    Article  PubMed  CAS  Google Scholar 

  • Wallis WJ, Simkin PA, Nelp WB, Foster DM. In rheumatoid arthritis, reduced effective synovial blood flow is associated with synovial fluid of lower glucose, pH, and temperature. Clinical Research 31: 47A, 1983

    Google Scholar 

  • Wanwimolruk S, Birkett DJ, Brooks PM. Protein binding of some non-steroidal anti-inflammatory drugs in rheumatoid arthritis. Clinical Pharmacokinetics 7: 85–92, 1982

    Article  PubMed  CAS  Google Scholar 

  • Whitlam JB, Brown KF. Ultrafiltration in serum protein binding determinations. J Pharm Sci 70: 146–150, 1981

    Article  PubMed  CAS  Google Scholar 

  • Whitlam JB, Crooks MJ, Brown KF, Pedersen PV. Binding of nonsteroidal anti-inflammatory agents to proteins — I. ibuprofen-serum albumin interaction. Biochemical Pharmacology 28: 675–678, 1979

    Article  PubMed  CAS  Google Scholar 

  • Wilkinson GR. Plasma and tissue binding considerations in drug disposition. Drug Metabolism Reviews 14: 427–465, 1983

    Article  PubMed  CAS  Google Scholar 

  • Wilkinson GR, Shand DG. A physiological approach to hepatic drug clearance. Clin Pharm Ther 18: 377–390, 1975

    CAS  Google Scholar 

  • Williams RL, Upton RA, Buskin JN, Jones RM. Ketoprofen-aspirin interactions. Clin Pharm Ther 30: 226–231, 1981

    Article  CAS  Google Scholar 

  • Windholz M (Ed.). The Merck Index, 10th Ed., Merck & Co., Inc., Rahway, NJ, 1983

    Google Scholar 

  • Windorfer A, Kuenzer W, Urbanek R. The influence of age on the activity of acetylsalicylic acid-esterase and protein-salicylate binding. Eur J Clin Pharm 7: 227–231, 1974

    Article  CAS  Google Scholar 

  • Wishinsky MS, Glasser EJ, Baltimore SP. Protein interactions of sulphonyl urea compounds. Diabetes 2 (Suppl.): 18–25, 1962

    Google Scholar 

  • Woodford-Williams E, Alvares AS, Webster D, Landless B, Dixon MP. Serum protein patterns in normal and pathological aging. Gerontologia 10: 86–99, 1964

    Article  Google Scholar 

  • Yacobi A, Levy G. Effect of plasma protein binding on the anticoagulant action of warfarin in rats. Res Comm Chem Path Pharm 12: 405–408, 1975

    CAS  Google Scholar 

  • Zini R, D’Athis P, Barre J, Tillement JP. Binding of indomethacin to human serum albumin: its non-displacement by various agents, influence of free fatty acid and the unexpected effect of indomethacin on warfarin binding. Biochemical Pharmacology 28: 2661–2665, 1979

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, J.H., Cocchetto, D.M. & Duggan, D.E. Protein Binding as a Primary Determinant of the Clinical Pharmacokinetic Properties of Non-Steroidal Anti-Inflammatory Drugs. Clin-Pharmacokinet 12, 402–432 (1987). https://doi.org/10.2165/00003088-198712060-00002

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-198712060-00002

Keywords

Navigation