Skip to main content
Log in

Pharmacologically Active Drug Metabolites: Therapeutic and Toxic Activities, Plasma and Urine Data in Man, Accumulation in Renal Failure

  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Summary

Drugs that are administered to man may be biotransformed to yield metabolites that are pharmacologically active. The therapeutic and toxic activities of drug metabolites and the species in which this activity was demonstrated are compiled for the metabolites of 58 drugs. The metabolite to parent drug ratio in the plasma of non-uraemic man and the percentage urinary excretion of the metabolite in non-uraemic man are also tabulated. Those active metabolites with significant pharmacological activity and high plasma levels, both relative to that of the parent drug, will probably contribute substantially to the pharmacological effect ascribed to the parent drug. Active metabolites may accumulate in patients with end stage renal disease if renal excretion is a major elimination pathway for the metabolite. This is true even if the active metabolite is a minor metabolite of the parent drug, as long as the minor metabolite is not further biotransformed and is mainly excreted in the urine. Minor metabolite accumulation may also occur if it is further biotransformed by a pathway inhibited in uraemia. Some clinical examples of the accumulation of active drug metabolites in patients with renal failure are: (a) The abolition of premature ventricular contractions and prevention of paroxysmal atrial tachycardia in some cardiac patients with poor renal function treated with procainamide are associated with high levels of N-acetylprocainamide. (b) The severe irritability and twitching seen in a uraemic patient treated with pethidine (meperidine) are associated with high levels of norpethidine. (c) The severe muscle weakness and tenderness seen in patients with renal failure receiving Clofibrate are associated with excessive accumulation of the free acid metabolite of Clofibrate, (d) Patients with severe renal insufficiency taking allopurinol appear to experience a higher incidence of side reactions, possibly due to the accumulation of oxipurinol. (e) Accumulation of free and acetylated sulphonamides in patients with renal failure is associated with an increase in toxic side-effects (severe nausea and vomiting, evanescent macular rash), (f) Peripheral neuritis seen after nitrofurantoin therapy in patients with impaired renal function is thought to be due to accumulation of a toxic metabolite.

The high incidence of adverse drug reactions seen in patients with renal failure may for some drugs be explained in part, as the above examples illustrate, by the accumulation of active drug metabolites.

Monitoring plasma levels of drugs can be an important guide to therapy. However, if a drug has an active metabolite, determination of parent drug alone may cause misleading interpretations of blood level measurements. The plasma level of the active metabolite should also be determined and its time-action characteristics taken into account in any clinical decisions based on drug level monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fabre, J. and Balant, L.: Renal failure, drug pharmacokinetics and drug action. Clinical Pharmacokinetics 1: 99 (1976).

    Article  PubMed  CAS  Google Scholar 

  2. Dawborn, J.K.: Renal failure and the action of drugs; in Edwards (Ed) Drugs and The Kidney, Progress in Biochemical Pharmacology Vol.9, p.206–220 (Karger, Basel 1974).

    Google Scholar 

  3. Pagliaro, L.A. and Benet, L.Z.: Critical compilation of terminal half-lives, percent excreted unchanged, and changes of half-life in renal and hepatic dysfunction for studies in humans with references. Journal of Pharmacokinetics and Biopharmaceutics 3: 333 (1975).

    Article  PubMed  CAS  Google Scholar 

  4. Vesell, E.S. and Passananti, G.T.: Utility of clinical chemical determinations of drug concentrations in biological fluids. Clinical Chemistry 17: 851–866 (1971).

    CAS  Google Scholar 

  5. Koch-Weser, J.: Serum drug concentrations as therapeutic guides. New England Journal of Medicine 287: 227–231 (1972).

    Article  PubMed  CAS  Google Scholar 

  6. Drayer, D.E.; Lowenthal, D.T.; Woosley, R.L.; Nies, A.S.; Schwartz, A. and Reidenberg, M.M.: Accumulation of N-acetylprocainamide (NAPA), an active metabolite of procainamide (PA), in patients with poor renal function. Abstracts of the. 9th Annual Meeting of the American Society of Nephrology, in press (1976).

  7. Deneau, G.A. and Nakai, K.: Toxicity of meperidine in the monkey as influenced by its rate of absorption. Bulletin, Drug Addiction and Narcotics, appendix 6, p. 2460 (1961).

    Google Scholar 

  8. Szeto, H.; Inturrisi, C.; Houde, R.; Saal, S.; Cheigh, J. and Reidenberg, M.M.: Accumulation of normeperidine (N), an active metabolite of meperidine (M), in patients with renal failure or cancer. Clinical Research 24: 258A (1976).

    Google Scholar 

  9. Pierides, A.M.; Alvarez-Ude, F.; Kerr, D.N.S. and Skillen, A.W.: Clofibrate-induced muscle damage in patients with chronic renal failure. Lancet 2: 1279 (1975).

    Article  PubMed  CAS  Google Scholar 

  10. Elion, G.B.; Yu, T-F.; Gutman, A.B. and Hitchings, G.H.: Renal clearance of oxipurinpl, the chief metabolite of allopurinol. American Journal of Medicine 45: 69 (1968).

    Article  PubMed  CAS  Google Scholar 

  11. Weinstein, L.: Antimicrobial agents; in Goodman and Gilman (Eds) Pharmacological Basis of Therapeutics, Chapter 56, 5th ed. p.1117 (Macmillan, New York 1975).

    Google Scholar 

  12. Adam, W.R. and Dawborn, J.K.: Urinary excretion and plasma levels of sulphonamides in patients with renal impairment. Australian Annals of Medicine 3: 250 (1970).

    Google Scholar 

  13. Stenbaek, O.; Myhre, E.; Brodwall, E.K. and Hansen, T.: Hypotensive effect of methyldopa in renal failure associated with hypertension. Acta Medica Scandinavica 191: 333 (1971).

    Google Scholar 

  14. Myhre, E.; Stenbaek, O.; Brodwall, E.K. and Hansen, T.: Conjugation of methyldopa in renal failure. Scandinavian Journal of Clinical and Laboratory Investigation 29: 195 (1972).

    Article  PubMed  CAS  Google Scholar 

  15. Saavedra, J.A.; Reid, J.L.; Jordan, W.; Rawlins, M.D. and Dollery, CT.: Plasma concentrations of α methyldopa and sulfate conjugate after oral administration of methyldopa and intravenous administration of methyldopa and methyldopa hydrochloride ethyl ester. European Journal of Clinical Pharmacology 8: 381 (1974).

    Article  Google Scholar 

  16. Bennett, W.M.; Singer, I. and Coggins, C.J.: A guide to drug therapy in renal failure. Journal of the American Medical Association 230: 1544 (1974).

    Article  PubMed  CAS  Google Scholar 

  17. Reidenberg, M.M.: Renal Function and Drug Action p.1–3 (Saunders, Philadelphia 1971).

    Google Scholar 

  18. Collinsworth, K.A.; Strong, J.M.; Atkinson, A.J.; Winkle, R.A.; Perlroth, F. and Harrison, D.C.: Pharmacokinetics and metabolism of lidocaine in patients with renal failure. Clinical Pharmacology and Therapeutics 18: 59 (1975).

    PubMed  CAS  Google Scholar 

  19. Cohen, B.D.; Galloway, J.A.; McMahon, R.E.; Culp, H.W.; Root, M.A. and Henriques, K.J.: Carbohydrate metabolism in uremia: blood glucose response to sulfonylurea. American Journal of Medical Science 254: 608 (1967).

    Article  CAS  Google Scholar 

  20. Brodie, B.B. and Axelrod, J.: Fate of acetanilide in man. Journal of Pharmacology and Experimental Therapeutics 94: 29 (1948).

    PubMed  CAS  Google Scholar 

  21. Yu, T.F.; Berger, L. and Gutman, A.B.: Hypoglycemic and uricosuric properties of acetohexamide and hydroxyhexamide. Metabolism 17: 309 (1968).

    Article  PubMed  CAS  Google Scholar 

  22. Galloway, J.A.; McMahon, R.E.; Culp, H.W.; Marshall, F.J. and Young, E.C.: Metabolism, blood levels and rate of excretion of acetohexamide in human subjects. Diabetes 16: 118 (1967).

    PubMed  CAS  Google Scholar 

  23. Kaiko, R.F. and Inturrisi, C.E.: Disposition of acetylmethadol in relation to pharmacologic action. Clinical Pharmacology and Therapeutics 18: 96 (1975).

    PubMed  CAS  Google Scholar 

  24. Kaiko, R.F.; Chatterjie, N. and Inturrisi, C.E.: Simultaneous determination of acetylmethadol and its active biotransformation products in human biofluids. Journal of Chromatography 109: 247 (1975).

    Article  PubMed  CAS  Google Scholar 

  25. Bachur, N.R.; Hildebrand, R.C. and Jaenke, R.S.: Adriamycin and daunorubicin disposition in the rabbit. Journal of Pharmacology and Experimental Therapeutics 191: 331 (1974).

    PubMed  CAS  Google Scholar 

  26. Bachur, N.R.: Adriamycin pharmacology. Cancer Chemotherapy Report (Part 3) 6: 153 (1975).

    CAS  Google Scholar 

  27. Takanashi, S. and Bachur, N.R.: Adriamycin metabolism in man. Evidence from urinary metabolites. Drug Metabolism and Disposition 4: 79 (1976).

    PubMed  CAS  Google Scholar 

  28. Elion, G.B.; Kovensky, A. and Hitchings, G.H.: Metabolic studies of allopurinol, an inhibitor of xanthine oxidase. Biochemical Pharmacology 15: 863 (1966).

    Article  PubMed  CAS  Google Scholar 

  29. Garattini, S.; Marcucci, F. and Mussini, E.: Biotransformation of drugs to pharmacologically active metabolites; in Gillette and Mitchell (Eds) Concepts in Biochemical Pharmacology Vol. 28, Part 3, p. 121 (Springer-Verlag, New York 1975).

    Google Scholar 

  30. Braithwaite, R.A. and Widdop, B.: Specific gaschromatographic method for the measurement of “steady-state” plasma levels of amitriptyline and nortriptyline in patients. Clinica Chimica Acta 35: 461 (1971).

    Article  CAS  Google Scholar 

  31. Innes, I.R. and Nickerson, M.: Norepinephrine, epinephrine and the sympathomimetic amines; in Goodman and Gilman (Eds) Pharmacological basis of Therapeutics, 5th edition, p.501–502 (Macmillan, New York 1975).

    Google Scholar 

  32. Dring, L.G.; Smith, R.L. and Williams, R.T.: The metabolic fate of amphetamine in man and other species. Biochemical Journal 116: 425 (1970).

    PubMed  CAS  Google Scholar 

  33. Morselli, P.L.; Biandrate, P.; Frigerio, A.; Gerna, M. and Tognoni, G.: Gas chromatographic determination of carbamazepine and carbamazepine- 10, 11-epoxide in human body fluids; in Meijer, Meinardi and Gardner-Thorpe (Eds) Methods of Analysis of Anti-epileptic Drugs, p. 169 (Excerpta Medica, Amsterdam 1973).

    Google Scholar 

  34. Eichelbaum, M.; Ekbom, K.; Bertilsson, L.; Ring-berger, V.A. and Rane, A.: Plasma kinetics of carbamazepine and its epoxide metabolite in man after single and multiple doses. European Journal of Clinical Pharmacology 8: 337 (1975).

    Article  PubMed  CAS  Google Scholar 

  35. Frigerio, A.; Fanelli, R.; Biandrate, P. et al.: Mass spectrometric characterization of carbamazepine-10,11-epoxide, a carbamazepine metabolite isolated from human urine. Journal of Pharmaceutical Science 61: 1144 (1972).

    Article  CAS  Google Scholar 

  36. Wick, W.E.; Wright, W.E. and Kuder, H.V.: Cephaloglycin and its biologically active metabolite desa-cetylcephaloglycin. Applied Microbiology 21: 426 (1971).

    PubMed  CAS  Google Scholar 

  37. Shimizu, K. and Nishimura, H.: Problems in the bio-assay of orally administered cephaloglycin in biological fluids and method for detection of its metabolite, desacetylcephaloglycin. Journal of Antibiotics 23: 216 (1970).

    Article  PubMed  CAS  Google Scholar 

  38. Wick, W.E.: In vitro and in vivo laboratory comparison of cephalothin and desacetylcephalothin. Antimicrobial Agents and Chemotherapy 1965 p.870–875 (1966).

    Google Scholar 

  39. Cooper, M.J.; Anders, M.W. and Mirkin, B.L.: Ionpair extraction and high-speed liquid chromatography of cephalothin and deacetylcephalothin in human serum and urine. Drug Metabolism and Disposition 1: 659 (1973).

    PubMed  CAS  Google Scholar 

  40. McCloskey, R.V.; Terry, E.E.; McCracken, A.W.; Sweeney, M.J. and Forland, M.F.: Effect of hemodialysis and renal failure on serum and urine concentrations of cephapirin sodium. Antimicrobial Agents and Chemotherapy 1: 90 (1972).

    Article  PubMed  CAS  Google Scholar 

  41. Cabana, B.E.; Van Harken, D.R.; Hottendorf, G.H. et al.: Role of the kidney in the elimination of cephapirin in man. Journal of Pharmacokinetics and Biopharmaceutics 3: 419 (1975).

    Article  PubMed  CAS  Google Scholar 

  42. Owens, A.H.; Marshall, E.K.; Broun, G.O.; Zubrod, C.G. and Lasagna, L.: Comparative evaluation of the hypnotic potency of chloral hydrate and trichloroethanol. Bull. Johns Hopkins Hospital 96: 71 (1955).

    CAS  Google Scholar 

  43. Marshall, E.K. and Owens, A.H.: Absorption, excretion and metabolic fate of chloral hydrate and trichloroethanol. Bull. Johns Hopkins Hospital 95: 1 (1954).

    CAS  Google Scholar 

  44. Berry, D.J.: Determination of trichloroethanol at therapeutic and overdose levels in blood and urine by electron capture gas chromatography. Journal of Chromatography 107: 107(1975).

    Article  PubMed  CAS  Google Scholar 

  45. Randall, L.O. and Kappell, B.: Pharmacological activity of some benzodiazepines and their metabolites; in Garattini, Mussini and Randall (Eds) p. 37–48 (Raven Press, New York 1973).

    Google Scholar 

  46. Hackman, M.R.; Brooks, M.A. and di Silva, J.A.F.: Determination of chlordiazepoxide hydrochloride (librium) and its major metabolites in plasma by differential pulse polarography. Analytical Chemistry 46: 1075 (1974).

    Article  PubMed  CAS  Google Scholar 

  47. Koechlin, B.A.; Schwartz, M.A.; Krol, G. and Oberhansli, W.: Metabolic fate of C14 labeled chlordiazepoxide in man, dog and in the rat. Journal of Pharmacology and Experimental Therapeutics 148: 399 (1965).

    PubMed  CAS  Google Scholar 

  48. Lal, S. and Sourkes, T.L.: Effect of various chlorpromazine metabolites on amphetamine-induced stereotyped behavior in the rat. European Journal of Pharmacology 17: 283 (1972).

    Article  PubMed  CAS  Google Scholar 

  49. Manian, A.A.; Efron, D.H. and Goldberg, M.E.: A comparative pharmacological study of a series of monohydroxylated and methoxylated chlorpromazine derivatives. Life Sciences 4: 2425 (1965).

    Article  PubMed  CAS  Google Scholar 

  50. Sakalis, G.; Chan, T.L.; Gershon, S. and Park, S.: Possible role of metabolites in therapeutic response to chlorpromazine treatment. Psychopharmacologia 32:279 (1973).

    Article  PubMed  CAS  Google Scholar 

  51. Taylor, J.A.: Pharmacokinetics and biotransformation of chlorpropamide in the rat and dog. Drug Metabolism and Disposition 2: 221 (1974).

    PubMed  CAS  Google Scholar 

  52. Taylor, J.A.: Pharmacokinetics and biotransformation of chlorpropamide in man. Clinical Pharmacology and Therapeutics 13: 710 (1972).

    PubMed  CAS  Google Scholar 

  53. Houin, G.; Thebault, J.J.; d’Athus, P. et al.: A GLC method for the estimation of chlorophenoxyisobutyric acid in plasma. Pharmacokinetics of a single oral dose of Clofibrate in man. European Journal of Clinical Pharmacology 8: 433 (1975).

    Article  PubMed  CAS  Google Scholar 

  54. Baker, E.M.: The metabolic fate of codeine in man. Journal of Pharmacology and Experimental Therapeutics 114: 251 (1955).

    PubMed  Google Scholar 

  55. Adler, T.K.; Fujimoto, J.M.; Way, E.L. and Baker, E.M.: Metabolic fate of codeine in man. Journal of Pharmacology and Experimental Therapeutics 114: 251 (1955).

    PubMed  CAS  Google Scholar 

  56. Miller, J.W. and Anderson, H.H.: The effect of N-demethylation on certain pharmacologic actions of morphine, codeine and meperidine in the mouse. Journal of Pharmacology and Experimental Therapeutics 112: 191 (1954).

    PubMed  CAS  Google Scholar 

  57. Jenkins, J.S. and Sampson, P.A.: Conversion of cortisone to Cortisol and prednisone to prednisolone. British Medical Journal 2: 205 (1967).

    Article  PubMed  CAS  Google Scholar 

  58. Huffman, D.H.; Benjamin, R.S. and Bachur, N.R.: Daunorubicin metabolism in acute nonlymphocytic leukemia. Clinical Pharmacology and Therapeutics 13: 895 (1972).

    PubMed  CAS  Google Scholar 

  59. Takanashi, S. and Bachur, N.R.: Daunorubicin metabolites in human urine. Journal of Pharmacology and Experimental Therapeutics 195: 41 (1975).

    PubMed  CAS  Google Scholar 

  60. Zingales, I.A.: Diazepam metabolism during chronic medication, unbound fraction in plasma, erythrocytes, and urine. Journal of Chromatography 75: 55 (1973).

    Article  PubMed  CAS  Google Scholar 

  61. Vohringer, H.F. and Rietbrock, N.: Metabolism and excretion of digitoxin in man. Clinical Pharmacology and Therapeutics 16: 796 (1974).

    PubMed  CAS  Google Scholar 

  62. Rubens, R.; Verhaegen, H.; Brugmans, J. and Schuermans, V.: Difenoxine, the active metabolite of diphenoxylate. Part 5: Clinical comparison of difenoxine and diphenoxylate. Arzneimittel-Forschung 22:526 (1972).

    PubMed  CAS  Google Scholar 

  63. Heykants, J.; Brugmans, J. and Verhaegen, H.: Difenoxide, the active metabolite of diphenoxylate. Part 6: Absorption, excretion, and metabolism in man. Arzneimittel-Forschung 22: 529 (1972).

    PubMed  CAS  Google Scholar 

  64. Cook, C.E.; Karim, A.; Forth, J.; Wall, M.E.; Ranney, R.E. and Bressler, R.C.: Ethynodiol diacetate metabolites in human plasma. J. Pharmacol. exp. Ther. 185:696 (1973).

    PubMed  CAS  Google Scholar 

  65. Kishimoto, Y.; Kraychy, S. and Ranney, R.E.: Metabolism of oral contraceptives. I. Metabolism of ethynodiol diacetate in women. Xenobiotica 2: 237 (1972).

    Article  PubMed  CAS  Google Scholar 

  66. Blundell, J.E. and Campbell, D.B.: Relationship between fenfluramine and norfenfluramine blood levels and anorectic activity in the rat. British Journal of Pharmacology 55: 261p. (1975).

    Google Scholar 

  67. Campbell, D.B. and Turner, P.: Plasma concentrations of fenfluramine and its metabolite, norfenfluramine, after single and repeated oral administration. British Journal of Pharmacology 43: 465p. (1971).

    Google Scholar 

  68. Beckett, A.H. and Brookes, L.G.: Absorption and urinary excretion in man of fenfluramine and its main metabolite. Journal of Pharmacy and Pharmacology 19: 42S (1967).

    PubMed  Google Scholar 

  69. Hossain, M. and Campbell, D.B.: Fenfluramine and methylcellulose in the treatment of obesity: The relationship between plasma drug concentrations and therapeutic efficacy. Postgraduate Medical Journal 51 (Suppl. 1): 178 (1975).

    PubMed  Google Scholar 

  70. Pottier, J.; busigny, M. and Raynaud, J.P.: Pharmacokinetic study of a peripheral analgesic, floctafenin in man, mouse, rat, and dog. Drug Metabolism and Disposition 3: 133 (1975).

    PubMed  CAS  Google Scholar 

  71. DeSilva, J.A.F.; Bekersky, I. and Puglisi, C.V.: Spectrofluorodensitometric determination of flurazepam and its major metabolites in blood. Journal of Pharmacuetical Sciences 63: 1837 (1974).

    Article  CAS  Google Scholar 

  72. Schwartz, M.A. and Postma, E.: Metabolism of flurazepam, a benzodiazepine, in man and dog. Journal of Pharmaceutical Sciences 59: 1800 (1970).

    Article  PubMed  CAS  Google Scholar 

  73. Maitre, L.; Staehelin, M. and Brunner, H.: Antihypertensive and noradrenaline-depleting effects of guanethidine metabolites. Journal of Pharmacy and Pharmacology 23: 327 (1971).

    Article  PubMed  CAS  Google Scholar 

  74. McMartin, C; Rondel, R.K.; Vinter, J. and Thirkettle, J.L.: Fate of guanethidine in two hypertensive patients. Clinical Pharmacology and Therapeutics 11: 423 (1970).

    PubMed  CAS  Google Scholar 

  75. Nagy, A. and Treiber, L.: Quantitative determination of imipramine and desipramine in human blood plasma by direct densitometry of thin-layer chromatograms. Journal of Pharmacy and Pharmacology 25: 599 (1973).

    Article  PubMed  CAS  Google Scholar 

  76. Gram, L.F. and Christiansen, J.: First-pass metabolism of imipramine in man. Clinical Pharmacology and Therapeutics 17: 555 (1975).

    PubMed  CAS  Google Scholar 

  77. Strong, J.M.; Mayfield, D.E.; Atkinson, A.J.; Burris, B.C.; Raymon, F. and Webster, L.T.: Pharmacologic activity, metabolism, and pharmacokinetics of glycinexylidide. Clinical Pharmacology and Therapeutics 17: 184 (1975).

    PubMed  CAS  Google Scholar 

  78. Strong, J.M.; Parker, M. and Atkinson, A.J.: Identification of glycinexylidide in patients treated with intravenous lidocaine. Clinical Pharmacology and Theapeutics 14: 67 (1973).

    CAS  Google Scholar 

  79. Keenaghan, J.B. and Boyes, R.N.: Tissue distribution, metabolism, and excretion of lidocaine in rats, guinea pigs, dogs, and man. Journal of Pharmacology and Experimental Therapeutics 180: 454 (1972).

    PubMed  CAS  Google Scholar 

  80. Smith, E.R. and Duce, B.R.: Acute antiarrhythmic and toxic effects in mice and dogs of 2-ethylamino-2′,6′-acetoxylidine (L-86), a metabolite of lidocaine. Journal of Pharmacology and Experimental Therapeutics 179: 580 (1971).

    PubMed  CAS  Google Scholar 

  81. Perez-Reyes, M.; Timmons, M.C.; Lipton, M.A.; Davis, K.H. and Wall, M.E.: Intravenous injection in man of delta-9-tetrahydrocannabinol and 11-OH-delta-9-tetrahydrocannabinol. Science 177: 633 (1972).

    Article  PubMed  CAS  Google Scholar 

  82. Hollister, L.E.: Structure-activity relationships in man of cannabis constituents, and homologs and metabolites of delta-9-tetrahydrocannabinol. Pharmacology 11: 3 (1974).

    Article  PubMed  CAS  Google Scholar 

  83. Miller, J.W. and Anderson, H.H.: Effect of N-demethylation on certain pharmacologic actions of morphine, codeine, and meperidine in the mouse. Journal of Pharmacology and Experimental Therapeutics 112: 191 (1954).

    PubMed  CAS  Google Scholar 

  84. Stambaugh, J.E. and Wainer, I.W.: Bioavailability of meperidine using urine assays for meperidine and normeperidine. Journal of Clinical Pharmacology 15: 269 (1975).

    PubMed  CAS  Google Scholar 

  85. Butler, T.C. and Waddell, W.J.: N-methylated derivatives of barbituric acid, hydantoin and oxazolidinedione used in the treatment of epilepsy. Neurology 8: 106S (1958).

    Article  Google Scholar 

  86. Svendsen, A.B. and Hanssen, E.B.: Gas chromatography of barbiturates II. Applications to the study of their metabolism and excretion in humans. Journal of Pharmaceutical Sciences 51: 494 (1962).

    Article  PubMed  CAS  Google Scholar 

  87. Strong, J.M.; Abe, T.; Gibbs, E.L. and Atkinson, A.J.: Plasma levels of methsuximide and N-desmethyl-methsuximide during methsuximide therapy. Neurology 24: 250 (1974).

    Article  PubMed  CAS  Google Scholar 

  88. Rietbrock, N.; Abshagen, U.; Bergmann, K. and Rennekamp, H.: Disposition of β-methyldigoxin in man. European Journal of Clinical Pharmacology 9: 105 (1975).

    Article  PubMed  CAS  Google Scholar 

  89. Yeh, S.Y.: Isolation and identification of morphine ethereal sulfate, normorphine and normorphine conjugate as morphine metabolites in man. Federal Proceedings 32: 763 (1973).

    Google Scholar 

  90. McChesney, E.W.; Froelich, E.J.; Lesher, G.Y.; Crain, A.V.R. and Rosi, D.: Absorption, excretion, and metabolism of a new antibacterial agent, nalidixic acid. Toxicology and Applied Pharmacology 6: 292 (1964).

    Article  PubMed  CAS  Google Scholar 

  91. Portmann, G.A.; McChesney, E.W.; Stander, H. and Moore, W.E.: Pharmacokinetic model for nalidixic acid in man II. Parameters for absorption, metabolism, and elimination. Journal of Pharmaceutical Sciences 55: 72 (1966).

    Article  PubMed  CAS  Google Scholar 

  92. Chatterjie, N.; Inturrisi, C.E.; Dayton, H.B. and Blumburg, H.: Steriospecific synthesis of the 6 β-hydroxy metabolites of naltrexone and naloxone. Journal of Medical Chemotherapy 18: 490 (1975).

    Article  CAS  Google Scholar 

  93. Weinstein, S.H.; Pfeffer, M. and Schor, J.M.: Metabolism and pharmacokinetics of naloxone. Advances in Biochemical Psychopharmacology 8: 525 (1973).

    PubMed  CAS  Google Scholar 

  94. Cone, E.J.; Gorodetzky, C.W. and Yeh, S.Y.: The urinary excretion profile of naltrexone and metabolites in man. Drug Metabolism and Disposition 2: 506 (1974).

    PubMed  CAS  Google Scholar 

  95. Cook, C.E.; Twine, M.E.; Tallent, C.R.; Wall, M.E. and Bressler, R.C.: Norethynodrel metabolites in human plasma and urine. Journal of Pharmacology and experimental Therapeutics 183: 197 (1972).

    PubMed  CAS  Google Scholar 

  96. Baggett, B.; Hall, I.H.; Boegli, R.G.; Palmer, K.H. and Wall, M.E.: Effects of two metabolites of norethynodrel on reproductive performance of female rats. Fertility and Sterility 21: 68 (1970).

    PubMed  CAS  Google Scholar 

  97. Di Carlo, F.J.; Melgar, M.D.; Haynes, L.J. and Crew, M.C.: Metabolic profile of a new immunosuppressive agent, oxisuran: binding, RE stimulation, drug interaction. Journal of Reticuloendothelizi Society 14: 387 (1973).

    Google Scholar 

  98. Crew, M.C.; Vesell, E.S.; Passananti, G.T.; Gala, R.L. and Di Carlo, F.J.: Studies on the metabolism in man of oxisuran, a differential immunosuppressive drug. Clinical Pharmacology and Therapeutics 14: 1013 (1973).

    PubMed  CAS  Google Scholar 

  99. Brodie, B.B. and Axelrod, J.: Fate of acetophenetidin (phenacetin) in man and methods for estimation of acetophenetidin and its metabolites in biological material. Journal of Pharmacology and Experimental Therapeutics 97: 58 (1949).

    PubMed  CAS  Google Scholar 

  100. Prescott, L.F.; Sansur, M.; Levin, W. and Conney, A.H.: Comparative metabolism of phenacetin and N-acetyl-p-aminophenol in man, with particular reference to effects on the kidney. Clinical Pharmacology and Therapeutics 9: 605 (1968).

    PubMed  CAS  Google Scholar 

  101. Yu, T.F.; Burns, J.J.; Paton, B.C.; Gutman, A.B. and Brodie, B.B.: Phenylbutazone metabolites: antirheumatic, sodium retaining and uricosuric effects in man. Journal of Pharmacology and Experimental therapeutics 123: 63 (1958).

    PubMed  CAS  Google Scholar 

  102. Burns, J.J.; Rose, R.K.; Goodwin, S. et al.: Metabolic fate of phenylbutazone (Butazolidin) in man. Journal of Pharmacology and Experiemtnal Therapeutics 113: 481 (1955).

    CAS  Google Scholar 

  103. Gallagher, B.B.; Baumel, I.P. and Mattson, R.H.: Metabolic disposition of primidone and its metabolites in epileptic subjects after single and repeated administration. Neurology 22: 1186 (1972).

    Article  PubMed  CAS  Google Scholar 

  104. Gallagher, B.B. and Baumel, I.P.: Primidone: Interactions with other drugs; in Woodbury, Penry and Schmidt (Eds), Antiepileptic Drugs, p.367–371 (Raven Press, New York 1972).

    Google Scholar 

  105. Butler, T.C. and Waddell, W.J.: Metabolic conversion of primidone (Mysoline) to phenobarbital. Proceedings of the Society of Experimental Biology and Medicine 93: 544 (1956).

    CAS  Google Scholar 

  106. Israili, Z.H.; Perel, J.M.; Cunningham, R.F. et al.: Metabolites of probenecid. Chemical, physical, and pharmacological studies. Journal of Medicinal Chemistry 15: 709 (1972).

    Article  PubMed  CAS  Google Scholar 

  107. Perel, J.M.; Cunningham, R.F.; Fales, H.M. and Dayton, P.G.: Identification and renal excretion of probenecid metabolites in man. Life Sciences 9 (part 1): 1337 (1970).

    Article  CAS  Google Scholar 

  108. Lee, W.K.; Strong, J.M.; Kehoe, R.F.; Dutcher, J.S. and Atkinson, A.J.: Antiarrhythmic efficacy of N-acetylprocainamide in patients with premature ventricular contractions. Clinical Pharmacology and Therapeutics 19: 508 (1976).

    PubMed  CAS  Google Scholar 

  109. Reidenberg, M.M.; Drayer, D.E.; Levy, M. and Warner, H.: Polymorphic acetylation of procainamide in man. Clinical Pharmacology and Therapeutics 17: 722 (1975).

    PubMed  CAS  Google Scholar 

  110. Gibson, T.P.; Matusik, J.; Matusik, E. et al.: Acetylation of procainamide in man and its relationship to isonicotinic acid hydrazide acetylation phenotype. Clin. Pharmacol. Ther. 17: 395 (1975).

    PubMed  CAS  Google Scholar 

  111. Fitzgerald, J.D. and O’Donnell, S.R.: Pharmacology of 4-hydroxypropranolol, a metabolite of propranolol. British Journal of Pharmacology 43: 222 (1971).

    Article  PubMed  CAS  Google Scholar 

  112. Walle, T.; Morrison, J.; Walle, K. and Conradi, E.: Simultaneous determination of propranolol and its active metabolite 4-hydroxypropranolol in plasma during chronic propranolol therapy. Fourth Pharmacol-Toxicol Program Symposium Abstracts p.64 (1975).

  113. Walle, T. and Gaffney, T.E.: Propranolol metabolism in man and dog: mass spectrometric identification of six new metabolites. Journal of Pharmacology and experimental Therapeutics 182: 83 (1972).

    PubMed  CAS  Google Scholar 

  114. Saelens, D.A.; Walle, T.; Privitera, P.J.; Knapp, D.R. and Gaffney, T.: Central nervous system effects and metabolic disposition of a glycol metabolite of propranolol. Journal of Pharmacology and Experimental Therapeutics 188: 86 (1974).

    PubMed  CAS  Google Scholar 

  115. Crowther, A.F. and Smith, L.H.: β-Adrenergic blocking agents. II. Propranolol and related 3-amino-l-naphthoxy-2-propranolols. Journal of Medicinal Chemistry 11: 1009 (1968).

    Article  PubMed  CAS  Google Scholar 

  116. Conn, H.L. and Luchi, R.J.: Some cellular and metabolic considerations relating to the action of quinidine as a prototype antiarrhythmic agent. American Journal of Medicine 37: 685 (1964).

    Article  PubMed  CAS  Google Scholar 

  117. McCawley, E.L. and Dick, H.: Metabolic products of quinidine in urine of volunteer subjects and patients with chronic atrial fibrillation. Proceedings of the Western Pharmacological Society 6: 25 (1963).

    CAS  Google Scholar 

  118. Tenconi, L.T.; Pallanza, R.; Beretta, E. and Furesz, S.: Biological properties of desacetylrifampicin, a metabolite of rifampicin; in Progress in Antimicrobial and Anticancer Chemotherapy Vol. 1, p.346–352 (University of Tokyo Press, Tokyo 1970).

    Google Scholar 

  119. Aguilar, S.J.: An open study of mesoridazine (Serentil) in chronic schizophrenics. Diseases of the Nervous System 36: 484 (1975).

    PubMed  CAS  Google Scholar 

  120. Martensson, E.; Nyberg, G.; Axelsson, R. and Serck-Hansen, K.: Quantitative determination of thioridazine and nonconjugated thioridazine metabolites in serum and urine of psychiatric patients. Current Therapeutic Research 18: 687 (1975).

    PubMed  CAS  Google Scholar 

  121. Chamberlin, H.R.; Waddell, W.J. and Butler, T.C.: A study of the product of demethylation of trimethadione in the control of petit mal epilepsy. Neurology 15:449 (1965).

    Article  PubMed  CAS  Google Scholar 

  122. Glazko, A.J.: Antiepileptic drugs: biotransformation, metabolism and serum half-life. Epilepsia 16: 367 (1975).

    Article  PubMed  CAS  Google Scholar 

  123. Booker, H.E. and Darcey, B.: Simultaneous determination of trimethadione and its metabolite, dimethadione, by gas-liquid chromatogrpahy. Clinical Chemistry 17: 607 (1971).

    PubMed  CAS  Google Scholar 

  124. Brickman, A.S.; Coburn, J.W. and Norman, A.W.: Action of 1, 25-dihydroxycholecalciferol, a potent, kidney-produced metabolite of vitamin D, in uremic man. New England Journal of Medicine 287: 891 (1972).

    Article  PubMed  CAS  Google Scholar 

  125. Henderson, R.G.; Russel, R.G.G.; Ledingham, J.G.G.; Smith, R.; Oliver, D.O.; Walton, R.J.; Small, D.G.; Preston, C; Warner, G.T. and Norman, A.W.: Effects of 1,25-dihydroxycholecalciferol on calcium absorption, muscle weakness, and bone disease in chronic renal failure. Lancet 1: 379 (1974).

    Article  PubMed  CAS  Google Scholar 

  126. Coburn, J.W. and Norman, A.W.: Role of the kidney in the metabolism of claciferol (Vitamin D). Clinical Nephrology 1: 273 (1973).

    PubMed  CAS  Google Scholar 

  127. Lewis, R.J.; Trager, W.F.; Robinson, A.J. and Chan, K.K.: Warfarin metabolites: the anticoagulant activity and pharmacology of warfarin alcohols. Journal of Laboratory and Clinical Medicine 81: 925 (1973).

    PubMed  CAS  Google Scholar 

  128. Hewick, D.S. and McEwen, J.: Plasma half-lives, plasma metabolites and anticoagulant efficacies of the enantiomers of warfarin in man. Journal of Pharmacy and Pharmacology 25: 458 (1973).

    Article  PubMed  CAS  Google Scholar 

  129. Lewis, R.J. and Trager, W.F.: Warfarin metabolism in man: Identification of metabolites in urine. Journal of Clinical Investigation 49: 907 (1970).

    Article  PubMed  CAS  Google Scholar 

  130. Israili, Z.H.; Cucinell, S.A.; Vaught, J. et al.: Metabolism of dapsone in man and experimental animals: formation of N-hydroxy metabolites. Journal of Pharmacology and Experimental therapeutics 187: 138 (1973).

    PubMed  CAS  Google Scholar 

  131. Uehleke, H. and Tabarelli, S.: N-hydroxylation of 4,4′—diaminodiphenylsulphone (dapsone) by liver microsomes, and in dogs and humans. Naunyn-Schmiedebergs Archives of Pharmacology 278: 55 (1973).

    Article  CAS  Google Scholar 

  132. Dasberg, H.H.; Kleijn, E.; Guelen, P.J.R. and Praag, H.M.: Plasma concentrations of diazepam and of its metabolite N-desmethyldiazepam in relation to anxiolytic effect. Clinical Pharmacology and Therapeutics 15: 473 (1974).

    PubMed  CAS  Google Scholar 

  133. Ambre, J.J. and Fischer, L.J.: Glutethimide intoxication: plasma levels of glutethimide and a metabolite in humans, dogs and rats. Research Communications in Chemical Pathology and Pharmacology 4: 307 (1972).

    PubMed  CAS  Google Scholar 

  134. Ambre, J.J. and Fischer, L.J.: Identification and activity of the hydroxy metabolite that accumulates in the plasma of humans intoxicated with glutethimide. Drug Metabolism and Disposition 2: 151 (1974).

    PubMed  CAS  Google Scholar 

  135. Gold, M.; Tassoni, E.; Etzl, M. and Mathew, G.: Concentration of glutethimide and associated compounds in human serum and cerebrospinal fluid after drug overdose. Clinical Chemistry 20: 195 (1974).

    PubMed  CAS  Google Scholar 

  136. Hansen, A.R. and Fischer, L.J.: Gas-chromatographic simultaneous analysis for glutethimide and an active hydroxylated metabolite in tissues, plasma and urine. Clinical Chemistry 20: 236 (1974).

    PubMed  CAS  Google Scholar 

  137. Buckley, J.P.; Steenberg, M.L.; Jandhyala, B.S. and Perel, J.M.: Effects of imipramine, desmethylimipramine and their 2-OH metabolites on hemodynamics and myocardial contractility in dogs. Federal Proceedings 34: 450 (1975).

    Google Scholar 

  138. Mitchell, J.R.; Thorgeirsson, U.P.; Black, M. et al.: Increased incidence of isoniazid hepatitis in rapid acetylators: possible relation to hydrazine metabolites. Clinical Pharmacology and Therapeutics 18: 70 (1975).

    PubMed  CAS  Google Scholar 

  139. Blumer, J.; Strong, J.M. and Atkinson, A.J.: Convulsant potency of lidocaine and its N-dealkylated metabolites. Journal of Pharmacology and Experimental Therapeutics 186: 31 (1973).

    PubMed  CAS  Google Scholar 

  140. Cousins, M.J. and Mazze, R.I.: Methoxyflurane toxicity. Journal of the American Medical Association 225: 1611 (1973).

    Article  PubMed  CAS  Google Scholar 

  141. Cousins, M.J.; Mazze, R.I.; Kosek, J.C.; Hitt, B.A. and Love, F.V.: Etiology of methoxyflurane nephrotoxicity. Journal of Pharmacology and Experimental Therapeutics 190: 530 (1974).

    PubMed  CAS  Google Scholar 

  142. Karch, S.B.: Methsuximide overdose. Delayed onset of profound coma. Journal of the American Medical Association 223: 1463 (1973).

    Article  CAS  Google Scholar 

  143. Gidley, J.T.; Christensen, H.D.; Hall, I.H.; Palmer, K.H. and Wall, M.E.: Teratogenic and other effects produced in mice by norethynodrel and its 3-hydroxy-metabolites. Teratology 3: 339 (1970).

    Article  PubMed  CAS  Google Scholar 

  144. Kappas, A.; Hellman, L.; Fukushima, D.R. and Gallagher, T.F.: Thermogenic effect and metabolic fate of etiocholanolone in man. Journal of Clinical Endocrinology and Metabolism 18: 1043 (1958).

    Article  PubMed  CAS  Google Scholar 

  145. Fukushima, D.K.; Bradlow, H.L.; Dobriner, F. and Gallagher, T.F.: Fate of testosterone infused intravenously in man. Journal of Biological Chemistry 206: 863 (1954).

    PubMed  CAS  Google Scholar 

  146. Field, J.B.; Ohta, M.; Boyle, C. and Remer, A.: Potentiation of acetohexamide hypoglycemia by phenylbutazone. New England Journal of Medicine 277:889 (1967).

    Article  PubMed  CAS  Google Scholar 

  147. Prescott, L.F.: Metabolism of phenacetin in patients with renal disease. Clinical Pharmacology and Therapeutics 10: 383 (1969).

    PubMed  CAS  Google Scholar 

  148. Lowenthal, D.T.; Oie, S.; Van Stone, J.C.; Briggs, W.A. and Levy, G.: Pharmacokinetics of acetaminophen elimination by anephric patients. Journal of Pharmacology and Experimental Therapeutics 196: 570 (1976).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Drayer, D.E. Pharmacologically Active Drug Metabolites: Therapeutic and Toxic Activities, Plasma and Urine Data in Man, Accumulation in Renal Failure. Clin Pharmacokinet 1, 426–443 (1976). https://doi.org/10.2165/00003088-197601060-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-197601060-00003

Keywords

Navigation