Skip to main content
Log in

Comparative Study on the Potentiometric Responses between a Valinomycin-Based Bilayer Lipid Membrane and a Solvent Polymeric Membrane

  • Original Papers
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

The potentiometric behavior of valinomycin incorporated bilayer lipid membranes (BLMs) was studied in view of a comparison with its solvent polymeric membrane counterpart. The preparation of membranes has greatly relied on the Takagi Montal method as well as synthetic lipid chemistry. The prepared membrane was First characterized regarding its electrical resistance, electrical capacitance and the effect of gramicidin to reveal its bilayer nature. The membrane potential was systematically studied in terms of i) the valinomycin concentration in the lipid membrane and ii) the effect of the lipid charge. The observed membrane potentials were compared with those of valinomycin-incorporated solvent polymeric membranes in terms of i) the detection limit, ii) the dynamic range and iii) the selectivity for alkali metal ions. It was found that the detection limit, dynamic range and optimum valinomycin concentration for the K+ ion-induced Nernstian response for the BLM electrode were comparable to those of the solvent polymeric membranes. The selectivity coefficients (Ki,jpot) for alkali metal ions determined by the separate solution method were also comparable to those of liquid membranes. However, a marked difference between both the membranes was found with respect to the effect of the membranous charge. The potentiometric response of the BLMs was found to depend on the charges of lipids. With negatively charged BLMs, the detection limit and dynamic range for K+ ions were improved. On the contrary, the response with positively charged BLMs was significantly reduced without any change in the Nernstian slope. This effect of lipid charge was compared with the anion effect for a solvent polymeric membrane. Finally, the first successful formation of planar BLMs using totally synthetic lipids was also demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Takagi, K. Azuma and U. Kishimoto, Ann. Rep. Biol. Works Fac. Sci. Osaka Univ., 13, 107 (1965).

    CAS  Google Scholar 

  2. M. Takagi, in “Seitaimaku Jikken Gijutsu (Experimental Techniques in Biomembrane Research, in Japanese)”, ed. T. Ohnishi, pp. 385–392, Nankodo, Tokyo, 1967.

  3. M. Montal and P. Mueller, Proa Natl. Acad. Sci. U.S.A., 69, 3561 (1972).

    Article  CAS  Google Scholar 

  4. M. Montal, Methods Enzymol, 32, 545 (1974).

    Article  CAS  Google Scholar 

  5. M. Montal, A. Darszon and H. Schindler, Q. Rev. Biophys., 14, 1 (1981).

    Article  CAS  Google Scholar 

  6. M. Montal, R. Anholt and P. Labarca, in “Ion Channel Reconstitution”, ed. C. Miller, Plenum Press, New York, 1986.

  7. P. Mueller, D. O. Rudin, H. T. Tien and W. C. Westcott, Nature [London], 194, 979 (1962).

    Article  CAS  Google Scholar 

  8. H. T. Tien, in “Bilayer Lipid Membranes”, Marcel Dekker, New York, 1974.

    Google Scholar 

  9. T. Kunitake and Y. Okahata, J. Am. Chem. Soc, 99, 3860 (1977).

    Article  CAS  Google Scholar 

  10. T. Kunitake, J. Macromol. Sci. Chem., A13, 587 (1979).

    Article  CAS  Google Scholar 

  11. G. Szabo, G. Eisenmanand, S.Ciani, J. Membrane Biol, 1, 346 (1969).

    Article  CAS  Google Scholar 

  12. G. Eisenman, S. Krasne and S. Ciani, Ann. N. Y. Acad. Sci., 264, 34 (1975).

    Article  CAS  Google Scholar 

  13. S. Krasne and G. Eisenman, J. Membrane Biol, 30, 1 (1976).

    Article  CAS  Google Scholar 

  14. R. Margalit and G. Eisenman, J. Membrane Biol, 61, 209 (1981).

    Article  CAS  Google Scholar 

  15. P. Mueller and D. O. Rudin, Biochem. Biophys. Res. Comm., 26, 398 (1967).

    Article  CAS  Google Scholar 

  16. J. M. Boggs, Can. J. Biochem., 58, 755 (1980).

    Article  CAS  Google Scholar 

  17. M. B. Abramson, G. Colacicco, R. Curci and M. M. Rapport, Biochemistry, 7, 1692 (1698).

    Article  Google Scholar 

  18. B. Alberts, D. Bray, J. Lewis, M. Raff, K. Roberts and J. D. Watson, in “Molecular Biology of The CeUT, 2nd ed., Garland Publishing, New York, 1989.

    Google Scholar 

  19. R. A. Demel and B. den Kruyff, Biochim. Biophys. Acta, 457, 109 (1976).

    Article  CAS  Google Scholar 

  20. R. Hartshorne, M. Tamkun and M. Montal, in “Ion Channel Reconstitution”, ed. C. Miller, Chapter 13, Plenum Press, New York, 1986.

  21. M. Montal, R. Anholt and P. Labarca, in “Ion Channel Reconstitution”, ed. C. Miller, Chapter 8, Plenum Press, New York, 1986.

  22. R. Coronado and R. Latorre, Biophys. J., 43, 231 (1983).

    Article  CAS  Google Scholar 

  23. M. C. Goodall, Arch. Biochem. Biophys., 147, 129 (1971).

    Article  CAS  Google Scholar 

  24. R. Binz and K. Janko, Biochim. Biophys. Acta, 455, 721 (1976).

    Article  Google Scholar 

  25. R. Benz, O. Frohlich, P. Lauger and M. Montal, Biochim. Biophys. Acta, 394, 323 (1975).

    Article  CAS  Google Scholar 

  26. K. Toth, E. Lindner, E. Pungor, E. Zippel and R. Kellner, Presenilis’ Z. Anal. Chem., 331, 448 (1988).

    Article  CAS  Google Scholar 

  27. G. Stark and R. Benz, J. Membrane Biol, 5, 133 (1971).

    Article  CAS  Google Scholar 

  28. S. H. White, in “Ion Channel Reconstitution”, ed. C. Miller, Chapter 1, Plenum Press, New York, 1986.

  29. A. Georgallas, D. L, Hunter, T. Lookman, M. J. Zuckermann and D. A. Pink, Eur. Biophys. J., 11, 79 (1984).

    Article  CAS  Google Scholar 

  30. K. Umezawa and Y. Umezawa, in “CRC Handbook of Ion-Selective Electrodes: Selectivity Coefficients”, ed. Y. Umezawa, CRC Press, Boca Raton, 1990.

  31. IUPAC recommendation, Pure Appl. Chem., 48, 127 (1976).

    Article  Google Scholar 

  32. A. Hodinar and A. Jyo, Anal Chem., 61, 1171 (1989).

    Article  Google Scholar 

  33. G. Horvai, E. Graf, K. Toth, E. Pungor and R. P. Buck, Anal. Chem., 58, 2735 (1986).

    Article  CAS  Google Scholar 

  34. W. E. Morf, G. Kahr and W. Simon, Anal. Lett., 7, 9 (1974).

    Article  CAS  Google Scholar 

  35. W. E. Morf, in “The Principles of Ion-Selective Electrodes and of Membrane Transport”, Chapter 8, Elsevier Scientific Publishing, Amsterdam, 1981.

    Google Scholar 

  36. Y. Ishikawa, H. Kawahara and T. Kunitake, J. Am. Chem. Soc, 111, 8530 (1989).

    Article  CAS  Google Scholar 

  37. P. Vanderwarf and E. F. Ullman, Biochim. Biophys. Acta, 596, 302 (1980).

    Article  Google Scholar 

  38. M. J. Liao and G. Prestegard, Biochim. Biophys. Acta, 550, 157 (1979).

    Article  CAS  Google Scholar 

  39. H. Hauser, I. Pascher, R. H. Pearson and S. Sundell, Biochim. Biophys. Acta, 650, 21 (1981).

    Article  CAS  Google Scholar 

  40. L. Makowski and J. Li in “Biomembrane Structure and Function”, ed. D. Chapman, Chapetr 2, Verlag Chemie, Weinheim, 1984.

  41. M. Sugawara, H. Sazawa and Y. Umezawa, Langmuir, in press.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Minami, H., Sato, N., Sugawara, M. et al. Comparative Study on the Potentiometric Responses between a Valinomycin-Based Bilayer Lipid Membrane and a Solvent Polymeric Membrane. ANAL. SCI. 7, 853–862 (1991). https://doi.org/10.2116/analsci.7.853

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.7.853

Keywords

Navigation