Skip to main content
Log in

Ionic permeation of lipid bilayer membranes mediated by a neutral, noncyclic Li+-selective carrier having imide and ether ligands. I. Selectivity among monovalent cations

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

We have found that Simon's neutral, noncyclic, Li+-selective complexone, which has imide and ether ligands, renders lipid bilayer membranes selectively permeable to certain cations and anions. The present paper characterizes the ability of this molecule to carry monovalent cations; and we show it to be most selective for Li+ among the alkali cations, the first reconstitution of Li+-selective permeation in lipid bilayer membranes. This complexone acts as an “equilibrium-domain” carrier for Ag+> Li+>Tl+>Na+>NH +4 >Rb+>Cs+ over a wide range of experimental conditions. The major type of membrane-permeating species formed is a 2∶1 carrier/cation complex dominant except at the lowest salt and carrier concentrations where a 1∶1 carrier/cation, with a similar selectivity sequence, can be detected. Among the groupIa cations the selectivity sequence in bilayers, Li+>Na+>K+>Rb+>Cs+, is similar to that previously found for this molecule in thick solvent-polymer membrane electrodes. We find this carrier to be more selective to Ag+ than to any other monovalent cation yet studied. This high Ag+ selectivity is used, together with the dependence of the selectivity on the nature of the N-amide substitutents, to argue that the imide oxygens play a major role as ligands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amdisen, A., Schou, M. 1978. Lithium.In: Side Effects of Drugs Annual 2, M.N.G. Dukes, editor, pp. 17–29. Excerpta Medica, Amsterdam-Oxford

    Google Scholar 

  2. Ammann, D., Bissig, R., Cimerman, Z., Fiedler, V., Guggi, M., Morf, W.E., Oehme, M., Osswald, H., Pretsch, E., Simon, W. 1976. Synthetic neutral carriers for cations.In: Ion and Enzyme Electrodes in Biology and Medicine. M. Kessler, L.C. Clark, Jr., D.W. Lubbers, I.A. Silver, and W. Simon, editors. pp. 22–37. Urban and Schwarzenberg, Munchen-Berlin-Wien

    Google Scholar 

  3. Ammann, D., Pretsch, E., Simon, W., 1974. A sodium ion-selective electrode based on a neutral carrier.Anal Lett. 7:23–32

    Google Scholar 

  4. Andersen, O.S. 1978. Ion transport across simple lipid membranes.In: Renal Functions. G.E. Giebisch and E.F. Purcell, editors, pp. 71–99. J. Macy, Jr. Foundation, New York

    Google Scholar 

  5. Andersen, O.S., Feldberg, S., Nakadomari, H., Levy, S., McLaughlin, S. 1978. Electrostatic interactions among hydrophobic ions in lipid bilayer membranes.Biophys. J. 21:35–77

    PubMed  Google Scholar 

  6. Andreoli, T.E., Tieffenberg, M., Tosteson, D.C. 1967. The effects of valinomycin on the ionic permeability of thin lipid membranes.J. Gen. Physiol. 50:2527–2545

    PubMed  Google Scholar 

  7. Ciani, S. 1976. Influence of molecular variations of ionophore and lipid on the selective ion permeability of membranes: A theoretical model.J. Membrane Biol. 30:45–63

    Google Scholar 

  8. Ciani, S., Eisenman, G., Szabo, G. 1969. A theory for the effects of neutral carriers such as the macrotetralide actin antibiotics on the electrical properties of bilayer membranes.J. Membrane Biol. 1:346–382

    Google Scholar 

  9. Duhm, J., Becker, B.F. 1977. Studies of the lithium transport across the red cell membrane.Pfluegers Arch. Eur. J. Physiol. 367:211–219;370:211–219

    Google Scholar 

  10. Ehrlich, B.E., Diamond, J.M., Clausen, C., Gosenfeld, L., Kaufman-Diamond, S. 1979. The red cell membrane as a model for studying lithium's therapeutic action.In: Lithium: Unresolved Issues and Controversies. Excerpta Medica, Amsterdam (in press)

  11. Eisenman, G. 1961. On the elementary atomic origin of equilibrium ionic specificity.In: Symposium on Membrane Transport. A. Kleinzeller and A. Kotyk, editors, pp. 163–179. Academic press, New York

    Google Scholar 

  12. Eisenman, G. 1969. Theory of membrane electrode potentials: An examination of the parameters determining the selectivity of solid and liquid ion exchangers and of neutral ion-sequestering molecules.In: Ion Selective Electrodes, R.A. Durst, editor. pp. 1–56. Natl. Bureau of Standards Special Publication No. 314

  13. Eisenman, G. 1978.In: Advances in Chemical Physics. R. Lefever and A. Goldbeter, editors, Vol. 39, pp. 316–318. Interscience, New York

    Google Scholar 

  14. Eisenman, G., Ciani, S., Szabo, G. 1968. Some theoretically expected and experimentally observed properties of lipid bilayer membranes containign neutral molecular carriers of ions.Fed. Proc. 27:1289–1304

    PubMed  Google Scholar 

  15. Eisenman, G., Krasne, S. 1975. The ion selectivity of carrier molecules, membranes and enzymes.In: MTP International Review of Science Biochemistry Series. C.F. Fox, editor. Vol. 2, pp. 27–59. Butterworths, London

    Google Scholar 

  16. Eisenman, G., Krasne, S., Ciani, S. 1975. The kinetic and equilibrium components of selective ionic permeability mediated by nactin and valinomycin-like carriers having systematically varied degrees of methylation.Ann. N.Y. Acad. Sci. 254:34–60

    Google Scholar 

  17. Eisenman, G., Margalit, R. 1978. Amphoteric complexes of a neutral ionophore having tertiary amide ligands—a model for anion binding to the polypeptide backbone.In: Frontiers of Biological Energetics: Electron to Tissue. J.S. Leigh, P.L. Dutton, and A. Scarpa, editors. Vol. II, pp. 1215–1225. Academic Press, New York

    Google Scholar 

  18. Eisenman, G., Sandblom, J., Neher, E. 1977. Ionic selectivity, saturation, binding and block in the gramicidin A channel: A preliminary report.In: Metal-Ligand Interactions in Organic Chemistry and Biochemistry B. Pullman and N. Goldblum, editors. Vol. 2, pp. 1–36. D. Reidel, Dordrecht

    Google Scholar 

  19. Eisenman, G., Sandblom, J., Neher, E. 1978. Interactions in cation permeation through the gramicidin channel: Ca, Rb, K, Na, Li, Tl, H, and effects of anion binding.Biophys. J. 22:307–340

    PubMed  Google Scholar 

  20. Eisenman, G., Szabo, G., Ciani, S., McLaughlin, S., Krasne, S. 1973. Ion binding and ion transport produced by neutral lipid-soluble molecules.Prog. Surf. Memb. Sci. 6:139–241

    Google Scholar 

  21. Guggi, M. 1977. Ph.D. Thesis. Swiss Federal Institute of Technology. Zürich

  22. Guggi, M., Fiedler, V., Pretsch, E., Simon, W. 1975. A lithium ion-selective electrode based on a neutral carrier.Anal Lett. 8:857–866

    Google Scholar 

  23. Hille, B. 1975. Ionic selectivity of the Na+ and K+ channels of nerve membranes.In: Membranes—A Series of Advances. G. Eisenman, editor, Vol. 3, pp. 255–323. Marcel Dekker, New York

    Google Scholar 

  24. Hladky, S.B., Haydon, D.A. 1973. Membrane conductance and surface potential.Biochim. Biophys. Acta 318:464–468

    Google Scholar 

  25. Kirsh, N.N.L., Funck, R.J.J., Pretsch, E., Simon, W. 1977. Membrane selectivity and synthesis of ionophores for Li+. Stability constants in ethanol.Helv. Chim. Acta 60:2326–2333

    PubMed  Google Scholar 

  26. Krasne, S., Eisenman, G. 1976. Influence of molecular variations of ionophore and lipid on the selective ion permeability of membranes. I. Tetranactin and the methylation of nonactintype carriers.J. Membrane Biol. 30:1–44

    Google Scholar 

  27. Krasne, S., Eisenman, G., Szabo, G. 1971. Freezing and melting of lipid bilayers and the mode of action of nonactin, vallinomycin and gramicidin A.Science 174:412–415

    PubMed  Google Scholar 

  28. Kuo, K.H., Eisenman, G. 1977. Na+-selective permeation of lipid bilayers mediated by a neutral ionophore.Biophys. J. 17:212a

    Google Scholar 

  29. Kuo, K.H., Eisenman, G. 1978. Mode of action of Simon's non-cyclic Na+-selective ligand on bilayers.Arzneimittel-Forschung (Drug Research),28(1):707

    Google Scholar 

  30. Laprade, R., Ciani, S., Eisenman, G., Szabo, G. 1975. The kinetics of carrier-mediated ion permeation in lipid bilayers and its theoretical interpretation.In: Membranes—A Series of Advances. G. Eisenman, editor. Vol. 3, pp. 127–214. Marcel Dekker, New York

    Google Scholar 

  31. Läuger, P. 1972. Carrier-mediated ion transport.Science 178:23–30

    Google Scholar 

  32. Lehn, J.M., Savage, J.R. 1971. Cation and cavity selectivities of alkali and alkaline earth “cryptates.”Chem. Commun. 197:440–441

    Google Scholar 

  33. Margalit, R., Eisenman, G. 1978a. Mode of action of Simon's noncyclic Li+-selective molecule on bilayers including its ability to carry anions selectively.Arzneimittel-Forschung (Drug Research)28(1):707–708

    Google Scholar 

  34. Margalit, R., Eisenman, G. 1978b. Anion selective permeation of lipid bilayers mediated by a neutral carrier with only oxygen ligands.Biophys. J. 21:26a

    Google Scholar 

  35. Margalit, R., Eisenman, G. 1979a. Co-transport of cations and anions across lipid bilayers mediated by a neutral carrier —a model for biological symport systems.Biophys. J. 26:260a

    Google Scholar 

  36. Margalit, R., Eisenman G. 1979b. Some binding properties of the peptide backbone inferred from studies of a neutral non-cyclic carrier having imide ligands.In: Peptides: Structure and Biological Functions. E. Gross and J. Meienhofer, editors. pp. 665–679. Pierce, Rockford (Illinois)

    Google Scholar 

  37. McBride, D., Szabo, G. 1978. Blocking of gramidcin channel conductance by Ag+.Biophys. J. 21:25a

    Google Scholar 

  38. McLaughlin, S.G.A., Szabo, G., Ciani, S., Eisenman, G. 1972. The effects of a cyclic polyether on the electrical properties of phospholipid bilayer membranes.J. Membrane Biol. 9:3–36

    Google Scholar 

  39. Mueller, P., Ruding, D.O. 1967. Development of K+−Na+ discrimination in experimental bimolecular lipid membranes by macrocyclic antibiotics. B.B.R.C.26:398–404

    Google Scholar 

  40. Ovchinnikov, Y.A., Ivanov V.T., Shkrov, A.M. 1974. Membrane Active Complexones. B.B.A. Library, Vol. 12, Elsevier Scientific, New York

    Google Scholar 

  41. Pandey, G.N., Dorus, E., Davis, J.M., Tosteson, D.C. 1979. Lithium transport in red blood cells, genetic and clinical aspects.In: The Li+ Ion Impact on Treatment and Research, F.K. Goodwin, editor.Arch. Gen. Psychiat. Special Issue: 902–908

  42. Szabo, G., Eisenman, G. 1973b. Enhanced cation permeability in glyceryl oleate bilayers.Biophys. J. 13:173a

    Google Scholar 

  43. Szabo, G., Eisenman, G., Ciani, S. 1969. The effects of macrotetralide actin antibiotics on the electrical properties of phospholipid bilayer membranes.J. Membrane. Biol. 1:346–382

    Google Scholar 

  44. Szabo, G., Eisenman, G., Laprade, R., Ciani, S., Krasne, S. 1973a. Experimentally observed effects of carriers on the electrical properties of bilayer membranes-equilibrium domain.In: Membranes—A Series of Advances. G. Eisenman, editor. Vol. 2, pp. 179–328. Marcel Dekker, New York

    Google Scholar 

  45. Szabo, G., McBride, D. 1978. Influence of double-layer and dipolar surface potentials on ionic conductance of gramicidin channels.Biophys. J. 21:25a

    Google Scholar 

  46. Wieland, T., Faulstich, H., Burgermeister, W., Otting, W., Mohle, W., Shemyakin, M.M., Ovchinnikov, Y.A., Ivanov, V.T., Malenkov, G.G. 1970. Affinity of antamanide for sodium ions.FEBS. Lett. 9:89–92

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Margalit, R., Eisenman, G. Ionic permeation of lipid bilayer membranes mediated by a neutral, noncyclic Li+-selective carrier having imide and ether ligands. I. Selectivity among monovalent cations. J. Membrain Biol. 61, 209–219 (1981). https://doi.org/10.1007/BF01870525

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01870525

Key words

Navigation