Skip to main content
Log in

Development of a Standard Method for Nanoparticle Sizing by Using the Angular Dependence of Dynamic Light Scattering

  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

A standard method for nanoparticle sizing based on the angular dependence of dynamic light scattering was developed. The dependences of the diffusion coefficients for aqueous suspensions of polystyrene latex on the concentration and scattering angle were accurately measured by using a high-resolution dynamic light-scattering instrument. Precise measurements of the short-time correlation function at seven scattering angles and five concentrations were made for suspensions of polystyrene latex particles with diameters from 30 to 100 nm. The apparent diffusion coefficients obtained at various angles and concentrations showed properties characteristic of polystyrene latex particles with electrostatic interactions. A simulation was used to calculate a dynamic structure factor representing the long-range interactions between particles. Extrapolations to infinite dilution and to low angles gave accurate particle sizes by eliminating the effects of long-range interactions. The resulting particle sizes were consistent with those measured by using a differential mobility analyzer and those obtained by pulsed-field gradient nuclear magnetic resonance measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Chu, “Laser Light Scattering”, 2nd ed., 1991, Academic Press, San Diego.

  2. B. J. Berne and R. Pecora, “Dynamic Light Scattering”, 1976, Wiley, New York.

  3. W. Brown and T. Nicolai, “Dynamic Light Scattering”, 1993, Clarendon Press, Oxford.

  4. W. Brown, “Light Scattering: Principles and Development”, 1996, Clarendon Press, Oxford.

  5. W. Schärtl, “Light Scattering from Polymer Solutions and Nanoparticle Dispersions”, 2007, Springer, Berlin.

  6. ISO 13321, “Particle Size Analysis—Photon Correlation Spectroscopy”, 1996.

  7. ISO 22412, “Particle Size Analysis—Dynamic Light Scattering (DLS)”, 2008.

  8. S. Bantle, M. Schmidt, and W. Burchard, Macromolecules, 1982, 15, 1604.

    Article  CAS  Google Scholar 

  9. M. Wenzel, W. Burchard, and K. Schätzel, Polymer, 1986, 27, 195.

    Article  CAS  Google Scholar 

  10. M. Schmidt, W. Burchard, and N. C. Ford, Macromolecules, 1978, 11, 452.

    Article  CAS  Google Scholar 

  11. W. Burchard, Polymer, 1979, 11, 577.

  12. K. Takahashi, H. Kato, T. Saito, S. Matsuyama, and S. Kinugasa, Part. Part. Syst. Charact., 2008, 25, 31.

    Article  CAS  Google Scholar 

  13. D. W. Schaefer and B. J. Berne, Phys. Rev. Lett., 1974, 32, 1110.

    Article  Google Scholar 

  14. J. C. Brown, P. N. Pusey, J. W. Goodwin, and R. H. Ottewill, J. Phys. A: Math. Gen., 1975, 8, 664.

    Article  CAS  Google Scholar 

  15. J. Gapinski, A. Patkowski, A. J. Banchio, P. Holmqvist, G. Meier, M. P. Lettinga, and G. Nägele, J. Chem. Phys., 2007, 126, 104905.

    Article  CAS  PubMed  Google Scholar 

  16. J.-Z. Xue, X.-L. Wu, D. J. Pine, and P. M. Chaikin, Phys. Rev. A, 1992, 45, 989.

    Article  CAS  PubMed  Google Scholar 

  17. B. V. R. Tata, P. S. Mohanty, J. Yamanaka, and T. Kawakami, Mol. Simul, 2004, 30, 153.

    Article  CAS  Google Scholar 

  18. W. B. Russel, D. A. Saville, and W. R. Schowalter, “Colloidal Dispersions”, 1989, Sect. 13, Cambridge University Press, Cambridge.

  19. E. W. Kaler, K. E. Bennett, H. T. Davis, and L. E. Scriven, J. Chem. Phys., 1983, 79, 5673.

    Article  CAS  Google Scholar 

  20. D. J. Kinning and E. L. Thomas, Maclomolecules, 1984, 17, 1712.

    Article  CAS  Google Scholar 

  21. K. Mortensen and J. S. Pedersen, Maclomolecules, 1993, 26, 805.

    Article  CAS  Google Scholar 

  22. M. Schwab and B. Stühn, Colloid Polym. Sci., 1997, 275, 341.

    Article  CAS  Google Scholar 

  23. S. N. Thennadil and L. H. Garcia-Rubio, Part. Part. Syst. Charact., 2007, 24, 402.

    Article  CAS  Google Scholar 

  24. J. K. Percus and G. J. Yevick, Phys. Rev., 1958, 110, 1.

    Article  CAS  Google Scholar 

  25. E. J. W. Verwey and J. T. G. Overbeek, “Theory of the Stability of Lyophobic Colloids”, 1948, Elsevier Publishing, New York.

  26. K. Ehara, G. W. Mulholland, and R. C. Hagwood, Aerosol Sci. Technol., 2000, 32, 434.

  27. K. Takahata and K. Ehara, Abstracts of Papers, the 7th International Aerosal Conference, 2006, 395.

  28. H. Kato, K. Takahashi, T. Saito, M. Suzuki, and S. Kinugasa, Chem. Phys. Lett., 2008, 463, 150.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kayori Takahashi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takahashi, K., Kato, H., Kato, H. et al. Development of a Standard Method for Nanoparticle Sizing by Using the Angular Dependence of Dynamic Light Scattering. ANAL. SCI. 27, 751–756 (2011). https://doi.org/10.2116/analsci.27.751

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.27.751

Navigation