Skip to main content
Log in

Development of Micro-Flow Hydrothermal Monitoring Systems and Their Applications to the Origin of Life Study on Earth

  • Reviews
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

Continuous extensive studies on thermophilic organisms have suggested that life emerged on hydrothermal systems on primitive Earth. Thus, it is well known that hydrothermal reactions are, therefore, very important to study fields deeply related to the origin-of-life study. Furthermore, the importance of hydrothermal and solvothermal systems is now realized in both fundamental and practical areas. Here, our recent investigations are described for the development of real-time and in situ monitoring systems for hydrothermal reactions. The systems were primarily developed for the origin-of-life study, but it was also applicable to fundamental and practical areas. The present techniques are based on the concept that a sample solution is injected to a narrow tubing flow reactor at high temperatures, where the sample is rapidly heated up in a very short time by exposure at to a high-temperature narrow tubing flow reactor with a very short time scale. This enables millisecond to second time-scale monitoring in real time and/or in situ at temperatures of up to 400°C. By using these techniques, a series of studies on the hydrothermal origin-of-life have been successfully carried out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

7 References

  1. J. B. Corliss, J. A. Baross, and S. E. Hoffman, Ocean. Acta, 1981, 4(Suppl.), 59.

  2. J. A. Baross and S. E. Hoffman, Origins Life Evol. Biosphere, 1985, 15, 327.

    Article  CAS  Google Scholar 

  3. N. R. Pace, Cell, 1991, 65, 531.

    Article  CAS  PubMed  Google Scholar 

  4. P. Forterre, Cell, 1996, 85, 789.

    Article  CAS  PubMed  Google Scholar 

  5. S. L. Miller and J. L. Bada, Nature, 1988, 334, 609.

    Article  CAS  PubMed  Google Scholar 

  6. N. Galtier, N. Tourasse, and M. Gouy, Science, 1999, 283, 220.

    Article  CAS  PubMed  Google Scholar 

  7. J. L. Bada and A. Lazcano, Science, 2002, 296, 1982.

    Article  CAS  PubMed  Google Scholar 

  8. H. Yanagawa and K. Kojima, J. Biochem., 1985, 97, 1521.

    Article  CAS  PubMed  Google Scholar 

  9. E. Imai, H. Honda, K. Hatori, A. Brack, and K. Matsuno, Science, 1999, 283, 831.

    Article  CAS  PubMed  Google Scholar 

  10. C. Guerrier-Takada, K. Gardiner, T. Marsh, N. Pace, and S. Altman, Cell, 1983, 35, 849.

    Article  CAS  PubMed  Google Scholar 

  11. M. D. Been and T. R. Cech, Science, 1988, 239, 1412.

    Article  CAS  PubMed  Google Scholar 

  12. T. R. Cech, Sci. Am., 1986, 235, 64.

    Article  Google Scholar 

  13. W. Gilbert, Nature, 1986, 319, 618.

    Article  Google Scholar 

  14. G. F. Joyce, A. W. Schwartz, S. L. Miller, and L. E. Orgel, Proc. Natl. Acad. Sci. U. S. A., 1987, 84, 4398.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. T. R. Cech, J. F. Atkins, and R. F. Gesteland (ed.), “The RNA World ”, 3rd ed., 2005, Cold Spring Harbor Monograph Series, Cold Spring Harbor Laboratory Press, New York.

  16. H. Sawai, J. Am. Chem. Soc., 1976, 98, 7037.

    Article  CAS  PubMed  Google Scholar 

  17. T. Inoue and L. E. Orgel, Science, 1983, 219, 859.

  18. G. F. Joyce, A. W. Shwartz, S. L. Miller, and L. E. Orgel, Proc. Natl. Acad. Sci. U. S. A., 1987, 84, 4398.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. J. P. Ferris and G. Ertem, Science, 1992, 257, 1387.

    Article  CAS  PubMed  Google Scholar 

  20. A. D. Ellington and J. W. Szostak, Nature, 1990, 346, 818.

    Article  CAS  PubMed  Google Scholar 

  21. A. A. Beaudry and G. F. Joyce, Science, 1992, 257, 635.

    Article  CAS  PubMed  Google Scholar 

  22. R. Larralde, M. P. Robertson, and S. L. Miller, Proc. Natl. Acad. Sci. U. S. A., 1995, 92, 8158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. R. H. White, Nature, 1984, 310, 430.

    Article  CAS  PubMed  Google Scholar 

  24. K. Kawamura, Inter. J. Astrobiol., 2004, 3, 301.

    Article  CAS  Google Scholar 

  25. K. Kawamura, A. Yosida, and O. Matumoto, Viva Origino, 1997, 25, 177.

  26. K. Kawamura, N. Kameyama, and O. Matumoto, Viva Origino, 1999, 27, 107.

    CAS  Google Scholar 

  27. D. A. Masten, B. R. Foy, D. M. Harradine, and R. B. Dyer, J. Phys. Chem., 1993, 97, 8557.

    Article  CAS  Google Scholar 

  28. M. L. Kieke, J. W. Schopperlrei, and T. B. Brill, J. Phys. Chem., 1996, 100, 7455.

    Article  CAS  Google Scholar 

  29. G. E. Bennett and K. P. Jphnston, J. Phys. Chem., 1994, 98, 441.

  30. J. L. Ferry and M. A. Fox, J. Phys. Chem. A, 1998, 102, 3705.

    Article  CAS  Google Scholar 

  31. J. Li and T. B. Brill, J. Phys. Chem., 2003, 107, 8575.

    Article  CAS  Google Scholar 

  32. K. Kawamura, Nippon Kagakukaishi, 1998, 255.

  33. K. Kawamura, Chem. Lett., 1999, 125.

  34. K. Kawamura, Bull. Chem. Soc. Jpn., 2000, 73, 1805.

    Article  CAS  Google Scholar 

  35. K. Kawamura, Japan Patent, 3378936.

  36. K. Kawamura, Anal. Sci., 2002, 18, 715.

    Article  CAS  PubMed  Google Scholar 

  37. K. Kawamura, Japan Patent Application, 2001-293712.

  38. K. Kawamura, H. Nagayoshi, and T. Yao, Anal. Chim. Acta, 2010, 667, 88.

    Article  CAS  PubMed  Google Scholar 

  39. K. Kawamura, Anal. Sci., 2003, 19, 1199.

    Article  CAS  PubMed  Google Scholar 

  40. Y. Qian, M. H. Engel, S. A. Macko, S. Carpenter, and J. W. Deming, Geochim. Cosmochim. Acta, 1993, 57, 3281.

    Article  CAS  PubMed  Google Scholar 

  41. S. M. Steinberg and J. L. Bada, J. Org. Chem., 1983, 48, 2295.

    Article  CAS  Google Scholar 

  42. R. M. Mitterer and N. Kriausakul, Org. Geochem., 1984, 7, 91.

    Article  CAS  Google Scholar 

  43. G. G. Smith, R. C. Evans, and R. Baum, J. Am. Chem. Soc., 1986, 108, 7327.

    Article  CAS  Google Scholar 

  44. K. Kawamura, Biochim. Biophys. Acta, 2003, 1620, 199.

    Article  CAS  PubMed  Google Scholar 

  45. K. Kawamura, Bull. Chem. Soc. Jpn., 2003, 76, 153.

    Article  CAS  Google Scholar 

  46. K. Kawamura and M. Yukioka, Thermochim. Acta, 2001, 375, 9.

    Article  CAS  Google Scholar 

  47. E. Anslyn and R. Breslow, J. Am. Chem. Soc., 1989, 111, 4473.

    Article  CAS  Google Scholar 

  48. P. Jarvinen, M. Oivanen, and H. Lönnberg, J. Org. Chem., 1991, 56, 5396.

    Article  CAS  Google Scholar 

  49. R. Kierzek, Nucleic Acids Res., 1992, 20, 5073.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. I. Zagorowska, S. Mikkola, and H. Lönnberg, Helv. Chim. Acta, 1999, 82, 2105.

    Article  CAS  Google Scholar 

  51. K. Kawamura, T. Nishi, and T. Sakiyama, J. Am. Chem. Soc., 2005, 127, 522.

    Article  CAS  PubMed  Google Scholar 

  52. E. Imai, H. Honda, K. Hatori, A. Brack, and K. Matsuno, Science, 1999, 283, 831.

    Article  CAS  PubMed  Google Scholar 

  53. K. Kawamura and M. Shimahashi, Naturwissenschaften, 2008, 95, 449.

    Article  CAS  PubMed  Google Scholar 

  54. K. Kawamura, H. Nagayoshi, and T. Yao, Res. Chem. Intermed., 2009, 35, 879.

    Article  CAS  Google Scholar 

  55. K. Kawamura, Anal. Chim. Acta, 2005, 543, 236.

    Article  CAS  Google Scholar 

  56. K. Kawamura and H. Nagayoshi, Thermochim. Acta, 2007, 466, 63.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kunio Kawamura.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kawamura, K. Development of Micro-Flow Hydrothermal Monitoring Systems and Their Applications to the Origin of Life Study on Earth. ANAL. SCI. 27, 675–683 (2011). https://doi.org/10.2116/analsci.27.675

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.27.675

Navigation