Skip to main content
Log in

One-step formation of oligopeptide-like molecules from Glu and Asp in hydrothermal environments

  • Short Communication
  • Published:
Naturwissenschaften Aims and scope Submit manuscript

Abstract

Biopolymer accumulation in the absence of enzymes is an essential step for the chemical evolution of primitive life-like systems, and successful simulation experiments of prebiotic biopolymer formation have suggested that oligopeptides could have formed near submarine hydrothermal vent environments on primitive earth. However, the yield and length of oligopeptides—typically limited to 6-mers—seems to be inadequate. One reason is the rapid formation of diketopiperazines (DKPs) from dipeptides. In this study, using a hydrothermal microflow reactor, we show that the one-step synthesis of oligopeptide-like molecules of length up to 20-mers proceeds from Glu and Asp. Yields of up to 0.17–0.57% were obtained in an acidic solution within 183 s at 250–310°C, as evaluated by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) analysis and different types of high-performance liquid chromatography (HPLC) analyses. The present study indicates that Glu and Asp may have played important roles in the chemical evolution of oligopeptide-like molecules in hydrothermal vent environments on primitive earth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  • Andersson E, Holm NG (2000) The stability of some selected amino acids under attempted redox constrained hydrothermal conditions. Orig Life Evol Biosph 30:9–23

    Article  PubMed  CAS  Google Scholar 

  • Bada JL, Lazcano A (2002) Origin of life—some like it hot, but not the first biomolecules. Science 296:1982–1983

    Article  PubMed  CAS  Google Scholar 

  • Bada JL, Miller SL (1970) The kinetics and mechanism of the reversible nonenzymatic deamination of aspartic acid. J Am Chem Soc 92:2774–2782

    Article  PubMed  CAS  Google Scholar 

  • Corliss J, Baross JA, Hoffman SE (1981) An hypothesis concerning the relationship between submarine hot springs and the origin of life on Earth. Oceanol Acta (Suppl) 4:59–69

    Google Scholar 

  • Cox JS, Seward TM (2007) The hydrothermal reaction kinetics of aspartic acid. Geochim Cosmochim Acta 71:797–820

    Article  CAS  Google Scholar 

  • Di Giulio M (2001) The universal ancestor was a thermophile or a hyperthermophile. Gene 281:11–17

    Article  PubMed  Google Scholar 

  • Eigen M, Gardiner W, Schuster P, Winkler-Oswatitsch R (1981) The origin of genetic information. Sci Am 244:78–95

    Article  Google Scholar 

  • Forterre P (1996) A hot topic: the origin of hyperthermopiles. Cell 85:789–792

    Article  PubMed  CAS  Google Scholar 

  • Fox SW, Harada K (1958) Thermal copolymerization of amino acids to a product resembling protein. Science 128:1214–1215

    Article  PubMed  CAS  Google Scholar 

  • Fox SW, Harada K (1960) The thermal copolymerization of amino acids common to protein. J Am Chem Soc 82:3745–3751

    Article  CAS  Google Scholar 

  • Galtier N, Tourasse N, Gouy M (1999) A nonhyperthermophilic common ancestor to extant life forms. Science 283:220–221

    Article  PubMed  CAS  Google Scholar 

  • Helgeson HC (1967) Thermodynamics of complex dissociation in aqueous solution at elevated temperatures. J Phys Chem 71:3121–3136

    Article  CAS  Google Scholar 

  • Holm NG (1992) Marine hydrothermal systems and the origin of life. Orig Life Evol Biosph 22(Special Issue):1–242

    Article  Google Scholar 

  • Honda S, Yamasaki K, Sawada Y, Morii H (2004) 10 residue folded peptide designed by segment statistics. Structure 12:1507–1518

    Article  PubMed  CAS  Google Scholar 

  • Ikehara K (2005) Possible steps to the emergence of life: the [GADV]-protein world hypothesis. Chem Rec 5:107–118

    Article  PubMed  CAS  Google Scholar 

  • Imai E, Honda H, Hatori K, Brack A, Matsuno K (1999) Elongation of oligopeptides in a simulated submarine hydrothermal system. Science 283:831–833

    Article  PubMed  CAS  Google Scholar 

  • Jean-Baptiste P, Fourre E, Metzl N, Ternon JF, Poisson A (2004) Red Sea deep water circulation and ventilation rate deduced from the He-3 and C-14 tracer fields. J Mar Syst 48:37–50

    Article  Google Scholar 

  • Kadko D, Butterfield DA (1998) The relationship of hydrothermal fluid composition and crustal residence time to maturity of vent fields on the Juan de Fuca Ridge. Geochim Cosmochim Acta 62:1521–1533

    Article  CAS  Google Scholar 

  • Kawamura K (2000) Monitoring hydrothermal reactions on the millisecond time scale using a micro-tube flow reactor and kinetics of ATP hydrolysis for the RNA world hypothesis. Bull Chem Soc Jpn 73:1805–1811

    Article  CAS  Google Scholar 

  • Kawamura K (2004) Behavior of RNA under hydrothermal conditions and the origins of life. Int J Astrobiol 3:301–309

    Article  CAS  Google Scholar 

  • Kawamura K, Yukioka M (2001) Kinetics of the racemization of amino acids at 225–275°C using a real-time monitoring method of hydrothermal reactions. Thermochim Acta 375:9–16

    Article  CAS  Google Scholar 

  • Kawamura K, Nishi T, Sakiyama T (2005) Consecutive elongation of alanine oligopeptides at the second time range under hydrothermal condition using a micro flow reactor system. J Am Chem Soc 127:522–523

    Article  PubMed  CAS  Google Scholar 

  • Miller SL, Bada JL (1988) Submarine hot springs and the origin of life. Nature 334:609–611

    Article  PubMed  CAS  Google Scholar 

  • Miller SL, Lazcano A (1995) The origin of life—did it occur at high temperatures? J Mol Evol 41:689–692

    Article  PubMed  CAS  Google Scholar 

  • Miller SL, Orgel LE (1974) The origins of life on the earth. Prentice-Hall, Englewood Cliffs, NJ

    Google Scholar 

  • Perrin DD (1965) Dissociation constants of organic bases in aqueous solution. Butterworths, London

    Google Scholar 

  • Qian Y, Engel MH, Macko SA, Carpenter S, Deming JW (1993) Kinetics of peptide hydrolysis and amino acid decomposition at high temperature. Geochim Cosmochim Acta 57:3281–3293

    Article  PubMed  CAS  Google Scholar 

  • Serjeant EP, Dempsey B (1979) Ionization constants of organic acids in aqueous solution. Pergamon, Oxford

    Google Scholar 

  • Sillen LG, Martell AE (1971) Stability constants of metal–ion complexes. The Chemical Society, London

    Google Scholar 

  • Shen C, Lazcano A, Oró J (1990) The enhancement activities of histidyl–histidine in some prebiotic reactions. J Mol Evol 31:445–452

    Article  PubMed  CAS  Google Scholar 

  • Shock EL (1992) Stability of peptides in high-temperature aqueous-solutions. Geochim Cosmochim Acta 56:3481–3491

    Article  CAS  Google Scholar 

  • Steinberg SM, Bada JL (1981) Diketopiperazine formation during investigations of amino acid racemisation in dipeptides. Science 213:544–545

    Article  PubMed  CAS  Google Scholar 

  • Suwannachot Y, Rode BM (1999) Mutual amino acid catalysis in salt-induced peptide formation supports this mechanism's role in prebiotic peptide evolution. Orig Life Evol Biosph 29:463–471

    Article  PubMed  CAS  Google Scholar 

  • White RH (1984) Hydrolytic stability of biomolecules at high temperatures and its implication for life at 250°C. Nature 310:430–432

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Japan Science and Technology Agency (JST, FS in Osaka Plaza) and Osaka Prefecture University (H18 FI). We thank Professor H. Nakazumi, Professor S. Yagi, and Dr. Y. Hyodo in Osaka Prefecture University for the MALDI-MS analysis. We thank Mr. H. Takeya and Mr. N. Morimoto for their assistance in obtaining some experimental data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kunio Kawamura.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

AE-HPLC profiles for the formation of oligopeptide-like molecules formed using a batch and the hydrothermal flow reactor system (HFRS). a Authentic polyGlu; b reaction products formed from Glu and Asp for 6 h at 180°C under dry conditions using a batch reactor; c reaction products formed from the mixture of Glu/Asp/H2O = 1:1:15.6 for 6 h at 180°C using a batch reactor; d the same sample as in c but dialyzed using dialysis tubing, which cuts off molecules smaller than 3,500 Da; e reaction products formed from the mixture containing 0.05 M Glu, 0.05 M Asp, 0.1 M NaCl, 0.05 M MgCl2 (initial pH = 3.18) for 182.7 s at 290°C using the hydrothermal flow reactor and the sample was dialyzed using dialysis tubing, which cuts off molecules smaller than 3,500 Da. AE-HPLC was carried out on a DNA-NPR column using a linear gradient of 0.15 M NaCl (0 min), 0.51 M (34 min), 0.75 M (50 min) at pH 9 (Tris 0.02 M) buffer at 35°C (DOC 74.5 kb)

Fig. S2

SE-HPLC charts for the detection of peptide-like molecules formed by the simulated hydrothermal primitive earth conditions. SE-HPLC analysis of the reaction products formed using the hydrothermal flow reactor of the mixture including 0.05 M Glu, 0.05 M Asp, 0.1 M NaCl, 0.05 M MgCl2 (initial pH = 3.18), 182.7 s. Temperatures: a 270°C, b 290°C, c 310°C. The samples were dialyzed using dialysis tubing, which cuts off molecules smaller than 3,500 Da. The SE-HPLC was carried out on a TSKgel column using a buffer containing 0.05 M NaH2PO4 and 0.3 M NaCl at pH 7.0 at 25°C. All the detection was performed at 220 nm (DOC 231 kb)

Fig. S3

Formation of pyroglutamic acid from glutamic acid. a 0.05 M Glu, 0.1 M NaCl, 0.05 M MgCl2, initial pH = 3.18; b 0.05 M Glu, 0.05 M Asp, 0.1 M NaCl, 0.05 M MgCl2, initial pH = 7.0. Open circles 250°C, closed circles 270°C, open squares 290°C, closed squares 310°C. The various symbols overlap so that many data points are concealed by the closed squares. The concentrations were determined by the chiral HPLC analysis. The chiral HPLC analysis was carried out on a Crown Pack (+) using a buffer containing HClO4 solution (pH = 2.0) at 25°C. Products are also identified using a reversed-phase HPLC analysis, which was carried out on a CAPCELL PAK using a linear gradient of a buffer containing 5 mM NaH2PO4 and 3.6 mM CH3(CH2)5SO3Na (pH = 2.65) mixed with a buffer containing 10 mM NaH2PO4 and 7.2 mM CH3(CH2)5SO3Na (pH = 2.70) at 35°C. Detection was performed at 220 nm (DOC 56.0 kb)

Fig. S4

Formation of fumaric acid from aspartic acid. a 0.05 M Glu, 0.05 M Asp, 0.1 M NaCl, 0.05 M MgCl2, initial pH = 3.18; b 0.05 M Glu, 0.05 M Asp, 0.1 M NaCl, 0.05 M MgCl2, initial pH = 7.0. Open circles Asp, open squares fumaric acid. Black 270°C, blue 290°C, red 310°C. The concentrations were determined by the chiral HPLC analysis. Details of the HPLC conditions are the same as those shown in Fig. S3 (DOC 88.0 kb)

Fig. S5

MALDI-MS spectra for the peptide-like molecules formed by the hydrothermal flow reactor. a Authentic polyGlu; b a reaction product formed from the mixture containing 0.05 M Glu, 0.05 M Asp, 0.1 M NaCl, 0.05 M MgCl2 (initial pH = 3.18), 182.7 s at 250°C using the hydrothermal flow reactor; c a reaction product formed from the mixture containing 0.05 M Glu, 0.05 M Asp, 0.05 M Gly, 0.05 M Ala, 0.05 M Val, 0.1 M NaCl, 0.05 M MgCl2 (initial pH = 4.50), 182.7 s at 250°C using the hydrothermal flow reactor. The samples were dialyzed using dialysis tubing, which cuts off molecules smaller than 3,500 Da (DOC 719 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kawamura, K., Shimahashi, M. One-step formation of oligopeptide-like molecules from Glu and Asp in hydrothermal environments. Naturwissenschaften 95, 449–454 (2008). https://doi.org/10.1007/s00114-008-0342-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00114-008-0342-7

Keywords

Navigation