Skip to main content
Log in

Stability of ribonuclease A under hydrothermal conditions in relation to the origin-of-life hypothesis: verification with the hydrothermal micro-flow reactor system

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

The stability of ribonuclease A (RNase A) was quantitatively investigated with the hydrothermal micro-flow reactor system (HFRS) at temperatures of up to 275 °C from the viewpoint of the hydrothermal origin-of-life hypothesis. The enzymatic activity of RNase A was studied with regard to the catalytic degradation of polynucleotides with anion-exchange high-performance liquid chromatography, while the degradation of RNase A to shorter molecules was analyzed by size exclusion chromatography (SEC) and mass spectrometry (MS). The degradation of RNase A started within 10 s at 200 °C, and the enzymatic activity disappeared almost completely after 25 s. SEC and MS analyses indicated that RNase A was thermally degraded to 2 large fragments, which, along with RNase A, were further decomposed to smaller fragments. This study showed that RNase A is fairly stable under normal conditions, but its enzymatic activity disappears rapidly at extremely high temperatures. The half life of RNase A and its fragments under hydrothermal conditions is comparable to or longer than the enzymatic reaction time scale of modern enzymes. Furthermore, this study demonstrates that HFRS is reliable and useful for verifying the stability of several proteins in fundamental and applied research as well as for studying the origin-of-life problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. K.O. Stetter, Ultrathin mycelia-forming organisms from submarine volcanic areas having an optimum growth temperature of 105 °C. Nature 300, 258–260 (1982)

    Article  Google Scholar 

  2. F. Fischer, W. Zillig, K.O. Stetter, G. Schreiber, Chemolithoautotrophic metabolism of anaerobic extremely thermophilic archaebacteria. Nature 301, 511–513 (1983)

    Article  CAS  Google Scholar 

  3. K.O. Stetter, Anaerobic life at extremely high temperatures. Orig. Life Evol. Biosphere 14, 809–815 (1984)

    Article  CAS  Google Scholar 

  4. M.W.W. Adams, Enzymes and proteins from organisms that grow near and above 100 °C. Ann. Rev. Microbiol. 47, 627–658 (1993)

    CAS  Google Scholar 

  5. C. Vieille, G.J. Zeikus, Hyperthermophilic enzymes: sources, uses, and molecular mechanisms for thermostability. Microbiol. Mol. Biol. Rev. 65, 1–43 (2001)

    Article  CAS  Google Scholar 

  6. W.E. Li, X.X. Zhou, P. Lu, Structural features of thermozymes. Biotech. Adv. 23, 271–281 (2005)

    Article  CAS  Google Scholar 

  7. M.E. Bruins, A.M.E. Janssen, R.M. Boom, Thermozymes and their applications––a review of recent literature and patents. Appl. Biochem. Biotech. 90, 155–186 (2001)

    Article  CAS  Google Scholar 

  8. T. Tanaka, M. Sawano, K. Ogasahara, Y. Sakaguchi, B. Bagautdinoe, E. Katoh, C. Kuroishi, A. Shinkai, S. Yokoyama, K. Yutani, FEBS Lett. 580, 4224–4230 (2006)

    Article  CAS  Google Scholar 

  9. L.V. Crawford, Allergenicity of cow’s milk proteins. 1. Effect of heat treatment on the allergenicity of protein fractions of milk as studied by the dual-ingestion passive transfer test. Pediatrics 25, 4332–4436 (1960)

    Google Scholar 

  10. L.A. Hanson, I. Mansson, Immune electrophoretic studies of bovine milk and milk products. Acta Pediatr. 50, 480–484 (1961)

    Google Scholar 

  11. E.I. El-Agmay, The challenge of cow milk protein allergy. Small Ruminant Res. 68, 64–72 (2007)

    Article  Google Scholar 

  12. J. Corliss, J.A. Baross, S.E. Hoffman, An hypothesis concerning the relationship between submarine hot springs and the origin of life on Earth. Ocean Acta (suppl) 4, 59–69 (1981)

    Google Scholar 

  13. J.A. Baross, S.E. Hoffman, Submarine hydrothermal vents and associated gradient environments as sites for the origin and evolution of life. Orig. Life 15, 327–345 (1985)

    Article  CAS  Google Scholar 

  14. N.R. Pace, Origin of life––Facing up to the physical setting. Cell 65, 531–533 (1991)

    Article  CAS  Google Scholar 

  15. T. Oshima, Origins and early evolution of life. Trans. Mat. Res. Soc. Jpn. 19B, 1069–1077 (1994)

    CAS  Google Scholar 

  16. P. Forterre, Thermoreduction, hypothesis for the origin of prokaryotes. C R Sci de la vie/Life Sci. Acad. Sci. Paris 318, 415–422 (1995)

    CAS  Google Scholar 

  17. H. Yanagawa, K. Kojima, Thermophilic microspheres of peptide-like polymer and silicates formed at 250 °C. J. Biochem. 97, 1521–1524 (1985)

    CAS  Google Scholar 

  18. N.G. Holm, E.M. Andersson, Abiotic synthesis of organic compounds under the conditions of submarine hydrothermal systems: a perspective. Planet Space Sic. 43, 153–159 (1995)

    Article  CAS  Google Scholar 

  19. E. Imai, H. Honda, K. Hatori, A. Brack, K. Matsuno, Elongation of oligopeptides in a simulated submarine hydrothermal system. Science 283, 831–833 (1999)

    Article  CAS  Google Scholar 

  20. K. Kawamura, T. Nishi, T. Sakiyama, Consecutive elongation of alanine oligopeptides at the second time range under hydrothermal condition using a micro flow reactor system. J. Am. Chem. Soc. 127, 522–523 (2005)

    Article  CAS  Google Scholar 

  21. K. Kawamura, M. Shimahashi, One-step formation of oligopeptide-like molecules from Glu and Asp in hydrothermal environments. Naturwissenschaften 95, 449–454 (2008)

    Article  CAS  Google Scholar 

  22. S.L. Miller, J.L. Bada, Submarine hot springs and the origin of life. Nature 334, 609–611 (1988)

    Article  CAS  Google Scholar 

  23. P. Forterre, A hot topic: The origin of hyperthermophiles. Cell 85, 789–792 (1996)

    Article  CAS  Google Scholar 

  24. N. Galtier, N. Tourasse, M. Gouy, A nonhyperthermophilic common ancestor to extant life forms. Science 283, 220–221 (1999)

    Article  CAS  Google Scholar 

  25. R.H. White, Hydrolytic stability of biomolecules at high temperatures and its implication for life at 250 °C. Nature 310, 430–432 (1984)

    Article  CAS  Google Scholar 

  26. R. Larralde, M.P. Robertson, S.L. Miller, Rates of decomposition of ribose and other sugars: Implications for chemical evolution. Proc. Nat. Acad. Sci. U.S.A. 92, 8158–8160 (1995)

    Article  CAS  Google Scholar 

  27. K. Kawamura, Monitoring of hydrothermal reactions in 3 ms using fused-silica capillary tubing. Chem. Lett. 125–126 (1999)

  28. K. Kawamura, Monitoring hydrothermal reactions on the millisecond time scale using a micro-tube flow reactor and kinetics of ATP hydrolysis for the RNA world hypothesis. Bull. Chem. Soc. Jpn. 73, 1805–1811 (2000)

    Article  CAS  Google Scholar 

  29. K. Kawamura, In situ UV–VIS detection of hydrothermal reactions using fused-silica capillary tubing within 0.08–3.2 s at high temperatures. Anal. Sci. 18, 715–716 (2002)

    Article  CAS  Google Scholar 

  30. K. Kawamura, Hydrolytic stability of ribose phosphodiester bonds within several oligonucleotides at high temperatures using a real-time monitoring method for hydrothermal reactions. Chem. Lett. 1120–1121 (2001)

  31. K. Kawamura, M. Yukioka, Kinetics of the racemization of amino acids at 225–275 °C using a real-time monitoring method of hydrothermal reactions. Thermochim. Acta 375, 9–16 (2001)

    Article  CAS  Google Scholar 

  32. K. Kawamura, Kinetic analysis of the cleavage of the ribose phosphodiester bond within guanine and cytosine-rich oligonucleotides and dinucleotides at 65–200 °C and its implications concerning thy chemical evolution of RNA. Bull. Chem. Soc. Jpn. 76, 153–162 (2003)

    Article  CAS  Google Scholar 

  33. K. Kawamura, Kinetics and activation parameter analyses of hydrolysis and interconversion of 2’, 5’- and 3’, 5’-linked dinucleotide monophosphate at extremely high temperatures. Biochim. Biophys. Acta 1620, 199–210 (2003)

    CAS  Google Scholar 

  34. K. Ikehara, Simulation of gene evolution. Viva Origino 31, 201–214 (2003)

    CAS  Google Scholar 

  35. K. Ikehara, Possible steps to the emergence of life: The [GADV]-protein world hypothesis. Chem. Record 5, 107–118 (2005)

    Article  CAS  Google Scholar 

  36. P. Andras, C. Andras, The origins of life––the ‘protein interaction world’ hypothesis: protein interactions were the first form of self-reproducing life and nucleic acids evolved later as memory molecules. Med. Hypoth. 64, 678–688 (2005)

    Article  CAS  Google Scholar 

  37. K. Plankensteiner, H. Reiner, B.M. Rode, Prebiotic chemistry: The amino acid and peptide world. Curr. Org. Chem. 9, 1107–1114 (2005)

    Article  CAS  Google Scholar 

  38. S. Mitsuzawa, T. Yukawa, Reverse chemical evolution: a new method to search for thermally stable biopolymers. Orig. Life Evol. Biosphere 33, 163–171 (2003)

    Article  CAS  Google Scholar 

  39. K. Kawamura, N. Kameyama, O. Matumoto, Kinetics of hydrolysis of ribonucleotide polymers in aqueous solution at elevated temperatures: implications of chemical evolution of RNA and primitive ribonuclease. Viva Origino 27, 107–118 (1999)

    CAS  Google Scholar 

  40. K. Kawamura, M. Nagahama, K. Kuranoue, Chemical evolution of RNA under hydrothermal conditions and the role of thermal copolymers of amino acids for the prebiotic degradation and formation of RNA. Adv. Space Res. 35, 1626–1633 (2005)

    Article  CAS  Google Scholar 

  41. R.T. Raines, Ribonuclease A. Chem. Rev. 98, 1045–1065 (1998)

    Article  CAS  Google Scholar 

  42. R. Lohrmann, P.K. Bridson, L.E. Orgel, Efficient metal-ion catalyzed template-directed oligonucelotide synthesis. Science 208, 1464–1465 (1980)

    Article  CAS  Google Scholar 

  43. W. Gilbert, The RNA world. Nature 319, 618 (1986)

    Article  Google Scholar 

  44. R.F. Gesteland, J.F. Atkins (eds.), The RNA World (Cold Spring Harbor Laboratory Press, New York, 1993)

    Google Scholar 

  45. K. Kawamura, Behavior of RNA under hydrothermal conditions and the origins of life. Int. J. Astrobiol. 3, 301–309 (2004)

    Article  CAS  Google Scholar 

  46. S.L. Miller, A production of amino acids under possible primitive Earth conditions. Science 117, 528–529 (1953)

    Article  CAS  Google Scholar 

  47. S.W. Fox, K. Harada, Thermal copolymerization of amino acids to a product resembling protein. Science 128, 1214–1215 (1958)

    Article  CAS  Google Scholar 

  48. S.W. Fox, Metabolic microspheres. Naturwissenschaften 67, 378–383 (1980)

    Article  CAS  Google Scholar 

  49. B. Barbier, A. Brack, Basic polypeptides accelerate the hydrolysis of ribonucleic-acids. J. Am. Chem. Soc. 110, 6880–6882 (1988)

    Article  CAS  Google Scholar 

  50. B. Barbier, A. Brack, Conformation-controlled hydrolysis of polyribonucleotides by sequential basic polypeptides. J. Am. Chem. Soc. 114, 3511–3515 (1992)

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The study was supported by a Grant-in-Aid for Scientific Research (C) (20540476) from Japan Society for the Promotion of Science (JSPS). We thank Professor H. Nakazumi in Osaka Prefecture University for the use of MALDI-MS instrument.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kunio Kawamura.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kawamura, K., Nagayoshi, H. & Yao, T. Stability of ribonuclease A under hydrothermal conditions in relation to the origin-of-life hypothesis: verification with the hydrothermal micro-flow reactor system. Res Chem Intermed 35, 879 (2009). https://doi.org/10.1007/s11164-009-0071-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11164-009-0071-3

Keywords

Navigation