Skip to main content
Log in

Determination of Dissolved Oxygen in Water Based on Its Quenching Effect on the Fluorescent Intensity of Bis(2,2′-bipyridine)-5-amino-1,10-phenanthroline Ruthenium Complex

  • Original Papers
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

A water-soluble fluorescence dye, bis(2,2′-bipyridine)-5-amino-1,10-phenanthroline ruthenium complex (Ru(bpy)2-(5-NH2-1,10-phen)), was synthesized and used as a fluorescence probe for detecting dissolved oxygen in water. The fluorescence intensity of the probe in different dissolved-oxygen concentrations was investigated. The sensitivity of the probe was evaluated in terms of the ratio ####, where #### and #### correspond to the detected fluorescence intensity of nitrogen and oxygen-saturated solutions, respectively. The experimental results showed that the probe yielded a linear Stern-Volmer plot, and had a #### ratio of about 5.2. The detection limit, defined as three-times the standard deviation, was 8.6 × 10−7 mol L−1 after eleven determinations of nitrogen-saturated blank solutions. Additionally, the probe was pH-insensitive and ionic strength-independent with good characteristics of practicality and selectivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Mistlberger, K. Koren, S. M. Borisov, and I. Klimant, Anal. Chem., 2010, 82, 2124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. P. C. Thomas, M. Halter, A. Tona, S. R. Raghavan, A. L. Plant, and S. P. Forry, Anal. Chem., 2009, 81, 9239.

    Article  CAS  PubMed  Google Scholar 

  3. L. Hutton, M. E. Newton, P. R. Unwin, and J. V. Macpherson, Anal. Chem., 2008, 81, 1023.

    Article  Google Scholar 

  4. A. J. Palma, J. López-González, L. J. Asensio, M. D. Fernández-Ramos, and L. F. Capitán-Vallvey, Anal. Chem., 2007, 79, 3173.

    Article  CAS  PubMed  Google Scholar 

  5. S. Sasaki, Anal. Sci., 2006, 22, 903.

    Article  CAS  PubMed  Google Scholar 

  6. ISO 5813, Water Quality—Determination of Dissolved Oxygen—Iodometric Method, 1983.

  7. W. Luo, M. E. Abbas, L. Zhu, W. Zhou, K. Li, H. Tang, S. Liu, and W. Li, Anal. Chim. Acta, 2009, 640, 63.

    Article  CAS  PubMed  Google Scholar 

  8. R. Ramamoorthy, P. Dutta, and S. Akbar, J. Mater. Sci., 2003, 38, 4271.

    Article  CAS  Google Scholar 

  9. T. Sakai, H. Takio, N. Teshima, and H. Nishikawa, Anal. Chim. Acta, 2001, 438, 117.

    Article  CAS  Google Scholar 

  10. C. Baleizão, S. Nagl, M. Schäferling, M. N. Berberan-Santos, and O. S. Wolfbeis, Anal. Chem., 2008, 80, 6449.

    Article  PubMed  Google Scholar 

  11. J. R. Lakowicz, “Principles of Fluorescence Spectroscopy”, 2nd ed., 1999, Kluwer Academic/Plenum Press, New York, 240.

  12. P. J. R. Roche, M. C. K. Cheung, K. Y. Yung, A. G. Kirk, V. P. Chodavarpu, and F. V. Bright, Sens. Actuators, B, 2010, 147, 581.

    Article  CAS  Google Scholar 

  13. O. Oter, K. Ertekin, and S. Derinkuyu, Mater. Chem. Phys., 2009, 113, 322.

    Article  CAS  Google Scholar 

  14. H. J. Kim, Y. C. Jeong, and J. I. Rhee, Talanta, 2008, 76, 1070.

    Article  CAS  PubMed  Google Scholar 

  15. P. A. S. Jorge, C. Maule, A. J. Silva, R. Benrashid, J. L. Santos, and F. Farahi, Anal. Chim. Acta, 2008, 606, 223.

    Article  CAS  PubMed  Google Scholar 

  16. C. S. Chu and Y. L. Lo, Sens. Actuators, B, 2008, 134, 711.

    Article  CAS  Google Scholar 

  17. K. Fujimori, N. Takenaka, H. Bandow, and Y. Maeda, Anal. Sci., 2001, 17, 161.

    Article  CAS  PubMed  Google Scholar 

  18. J. W. Dobrucki, J. Photochem. Photobiol., B, 2001, 65, 136.

    Article  CAS  PubMed  Google Scholar 

  19. H. Zhang, B. Li, B. Lei, W. Li, and S. Lu, Sens. Actuators, B, 2007, 123, 508.

    Article  CAS  Google Scholar 

  20. Z. Rosenzweig and R. Kopelman, Anal. Chem., 1995, 67, 2650.

    Article  CAS  PubMed  Google Scholar 

  21. X. Xiong, D. Xiao, and M. M. F. Choi, Sens. Actuators, B, 2006, 117, 172.

    Article  CAS  Google Scholar 

  22. X. M. Chen, G. H. Wu, J. M. Chen, Y. Q. Jiang, G. N. Chen, M. Oyama, X. Chen, and X. R. Wang, Biosens. Bioelectron., 2010, 26, 872.

    Article  CAS  PubMed  Google Scholar 

  23. Y. Tao, Z. J. Lin, X. M. Chen, X. L. Huang, M. Oyama, X. Chen, and X. R. Wang, Sens. Actuators, B, 2008, 129, 758.

    Article  CAS  Google Scholar 

  24. S. Kemp, N. J. Wheate, D. P. Buck, M. Nikac, J. G. Collins, and J. R. Aldrich-Wright, J. Inorg. Biochem., 2007, 101, 1049.

    Article  CAS  PubMed  Google Scholar 

  25. C. D. Ellis, L. D. Margerum, R. W. Murray, and T. J. Meyer, Inorg. Chem., 1983, 22, 1283.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chenggang Niu or Guangming Zeng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, L., Niu, C., Zeng, G. et al. Determination of Dissolved Oxygen in Water Based on Its Quenching Effect on the Fluorescent Intensity of Bis(2,2′-bipyridine)-5-amino-1,10-phenanthroline Ruthenium Complex. ANAL. SCI. 27, 1121–1125 (2011). https://doi.org/10.2116/analsci.27.1121

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.27.1121

Navigation