Skip to main content
Log in

A BODIPY Based Fluorescent Probe for the Rapid Detection of Hypochlorite

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

A new boron-dipyrromethene (BODIPY) fluorescent dye aimed at sensitively detecting hypochlorite anion (ClO) has been designed, synthesized and characterized. The probe is comprised of a BODIPY fluorophore unit and a ClO specific reactive group of amidoxime. The addition of hypochlorite results in a red-shift of absorption and emission spectra of the probe accompanied by a decrease of intensity and spectra changes (A500 and 1/I512) of the probe can achieve a good linearity to the concentration of ClO. The fluorescence probe can react to ClO rapidly (within 60 s) in a wide pH range (4–10) with high sensitivity (detection limit of 6.81 μM) and selectivity. The reaction mechanism has been proposed and confirmed by MS analysis, ClO anion oxidizes amidoxime moiety to hydroxyl group and hydroxyl group is further oxidized to formyl group in the formation of a corresponding aldehyde compound. In addition, the probe has also been successfully applied to detect ClO in tap water and river water samples by spiking a known amount of standard ClO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Scheme 2
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Winterbourn CC, Hampton MB, Livesey JH, Kettle AJ (2006) Modeling the reactions of superoxide and myeloperoxidase in the neutrophil phagosome - implications for microbial killing. J Biol Chem 281(52):39860–39869. https://doi.org/10.1074/jbc.M605898200

    Article  PubMed  CAS  Google Scholar 

  2. Lapenna D, Cuccurullo F (1996) Hypochlorous acid and its pharmacological antagonism: an update picture. General pharmacology: the vascular system 27 (7):1145-1147. https://doi.org/10.1016/S0306-3623(96)00063-8

  3. Prokopowicz ZM, Arce F, Biedron R, Chiang CL-L, Ciszek M, Katz DR, Nowakowska M, Zapotoczny S, Marcinkiewicz J, Chain BM (2010) Hypochlorous acid: a natural adjuvant that facilitates antigen processing, cross-priming, and the induction of adaptive immunity. J Immunol 184(2):824–835. https://doi.org/10.4049/jimmunol.0902606

    Article  PubMed  CAS  Google Scholar 

  4. ZgliczyŃSki JM, StelmaszyŃSka T, Ostrowski W, Naskalski J, Sznajd J (1968) Myeloperoxidase of human Leukaemic leucocytes. Eur J Biochem 4(4):540–547. https://doi.org/10.1111/j.1432-1033.1968.tb00246.x

    Article  PubMed  Google Scholar 

  5. Fiedler TJ, Davey CA, Fenna RE (2000) X-ray crystal structure and characterization of halide-binding sites of human myeloperoxidase at 1.8 angstrom resolution. J Biol Chem 275(16):11964–11971. https://doi.org/10.1074/jbc.275.16.11964

    Article  PubMed  CAS  Google Scholar 

  6. Daugherty A, Dunn JL, Rateri DL, Heinecke JW (1994) Myeloperoxidase, a catalyst for lipoprotein oxidation, is expressed in human atherosclerotic lesions. J Clin Invest 94(1):437–444. https://doi.org/10.1172/JCI117342

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Wu SM, Pizzo SV (2001) α2-macroglobulin from rheumatoid arthritis synovial fluid: functional analysis defines a role for oxidation in inflammation. Archives of biochemistry and biophysics 391 (1):119-126. https://doi.org/10.1006/abbi.2001.2408

  8. Pullar JM, Vissers MCM, Winterbourn CC (2000) Living with a killer: the effects of hypochlorous acid on mammalian cells. IUBMB Life 50(4–5):259–266. https://doi.org/10.1080/15216540051080958

    Article  PubMed  CAS  Google Scholar 

  9. Benhar M, Engelberg D, Levitzki A (2002) ROS, stress-activated kinases and stress signaling in cancer. EMBO Rep 3(5):420–425. https://doi.org/10.1093/embo-reports/kvf094

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Ramsey MR, Sharpless NE (2006) ROS as a tumour suppressor? Nat Cell Biol 8(11):1213–1215. https://doi.org/10.1038/ncb1106-1215

    Article  PubMed  CAS  Google Scholar 

  11. Aoki T, Munemori M (1983) Continuous-flow determination of free chlorine in water. Anal Chem 55(2):209–212. https://doi.org/10.1021/ac00253a010

    Article  CAS  Google Scholar 

  12. Mesquita RBR, Rangel A (2005) Gas diffusion sequential injection system for the spectrophotometric determination of free chlorine with o-dianisidine. Talanta 68(2):268–273. https://doi.org/10.1016/j.talanta.2005.07.028

    Article  PubMed  CAS  Google Scholar 

  13. Odabasi M (2008) Halogenated volatile organic compounds from the use of chlorine-bleach-containing household products. Environmental Science & Technology 42(5):1445–1451. https://doi.org/10.1021/es702355u

    Article  CAS  Google Scholar 

  14. Chen X, Tian X, Shin I, Yoon J (2011) Fluorescent and luminescent probes for detection of reactive oxygen and nitrogen species. Chem Soc Rev 40(9):4783–4804. https://doi.org/10.1039/c1cs15037e

    Article  PubMed  CAS  Google Scholar 

  15. Fernandez-Suarez M, Ting AY (2008) Fluorescent probes for super-resolution imaging in living cells. Nat Rev Mol Cell Biol 9(12):929–943. https://doi.org/10.1038/nrm2531

    Article  PubMed  CAS  Google Scholar 

  16. Yue Y, Dong Q, Zhang Y, Sun Y, Gong Y (2015) A highly selective "turn-on" fluorescent chemosensor based on 8-aminoquinoline for detection of Zn2+. Anal Methods 7(13):5661–5666. https://doi.org/10.1039/c5ay01007a

    Article  CAS  Google Scholar 

  17. Hudnall TW, Gabbai FP (2008) A BODIPY boronium cation for the sensing of fluoride ions. Chem Commun 38:4596–4597. https://doi.org/10.1039/b808740g

    Article  CAS  Google Scholar 

  18. Cao X, Lin W, Zheng K, He L (2012) A near-infrared fluorescent turn-on probe for fluorescence imaging of hydrogen sulfide in living cells based on thiolysis of dinitrophenyl ether. Chem Commun 48(85):10529–10531. https://doi.org/10.1039/c2cc34031c

    Article  CAS  Google Scholar 

  19. Liu J, Yue Y, Wang J, Yan X, Liu R, Sun Y, Li X (2015) Study of interaction between human serum albumin and three phenanthridine derivatives: fluorescence spectroscopy and computational approach. Spectrochimica Acta Part a-Molecular and Biomolecular Spectroscopy 145:473–481. https://doi.org/10.1016/j.saa.2015.03.069

    Article  CAS  Google Scholar 

  20. Vernekar SKV, Hallaq HY, Clarkson G, Thompson AJ, Silvestri L, Lummis SCR, Lochner M (2010) Toward biophysical probes for the 5-HT3 receptor: structure-activity relationship study of Granisetron derivatives. J Med Chem 53(5):2324–2328. https://doi.org/10.1021/jm901827x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Boens N, Leen V, Dehaen W (2012) Fluorescent indicators based on BODIPY. Chem Soc Rev 41(3):1130–1172. https://doi.org/10.1039/c1cs15132k

    Article  PubMed  CAS  Google Scholar 

  22. Kenmoku S, Urano Y, Kojima H, Nagano T (2007) Development of a highly specific rhodamine-based fluorescence probe for hypochlorous acid and its application to real-time imaging of phagocytosis. J Am Chem Soc 129(23):7313–7318. https://doi.org/10.1021/ja068740g

    Article  PubMed  CAS  Google Scholar 

  23. Liu S-R, Wu S-P (2013) Hypochlorous acid turn-on fluorescent probe based on oxidation of diphenyl selenide. Org Lett 15(4):878–881. https://doi.org/10.1021/ol400011u

    Article  PubMed  CAS  Google Scholar 

  24. Lou Z, Li P, Song P, Han K (2013) Ratiometric fluorescence imaging of cellular hypochlorous acid based on heptamethine cyanine dyes. Analyst 138(21):6291–6295. https://doi.org/10.1039/c3an00198a

    Article  PubMed  CAS  Google Scholar 

  25. Zha J, Fu B, Qin C, Zeng L, Hu X (2014) A ratiometric fluorescent probe for rapid and sensitive visualization of hypochlorite in living cells. RSC Adv 4(81):43110–43113. https://doi.org/10.1039/c4ra07009g

    Article  CAS  Google Scholar 

  26. Chen X, Wang X, Wang S, Shi W, Wang K, Ma H (2008) A highly selective and sensitive fluorescence probe for the hypochlorite anion. Chem Eur J 14(15):4719–4724. https://doi.org/10.1002/chem.200701677

    Article  PubMed  CAS  Google Scholar 

  27. Yin W, Zhu H, Wang R (2014) A sensitive and selective fluorescence probe based fluorescein for detection of hypochlorous acid and its application for biological imaging. Dyes Pigments 107:127–132. https://doi.org/10.1016/j.dyepig.2014.03.012

    Article  CAS  Google Scholar 

  28. Cheng X, Jia H, Long T, Feng J, Qin J, Li Z (2011) A "turn-on" fluorescent probe for hypochlorous acid: convenient synthesis, good sensing performance, and a new design strategy by the removal of C = N isomerization. Chem Commun 47(43):11978–11980. https://doi.org/10.1039/c1cc15214a

    Article  CAS  Google Scholar 

  29. Chen W-C, Venkatesan P, Wu S-P (2015) A highly selective turn-on fluorescent probe for hypochlorous acid based on hypochlorous acid-induced oxidative intramolecular cyclization of boron dipyrromethene-hydrazone. Anal Chim Acta 882:68–75. https://doi.org/10.1016/j.aca.2015.04.012

    Article  PubMed  CAS  Google Scholar 

  30. Lin W, Long L, Chen B, Tan W (2009) A Ratiometric fluorescent probe for hypochlorite based on a Deoximation reaction. Chem Eur J 15(10):2305–2309. https://doi.org/10.1002/chem.200802054

    Article  PubMed  CAS  Google Scholar 

  31. Cheng G, Fan J, Sun W, Sui K, Jin X, Wang J, Peng X (2013) A highly specific BODIPY-based probe localized in mitochondria for HClO imaging. Analyst 138(20):6091–6096. https://doi.org/10.1039/C3AN01152F

    Article  PubMed  CAS  Google Scholar 

  32. Emrullahoglu M, Ucuncu M, Karakus E (2013) A BODIPY aldoxime-based chemodosimeter for highly selective and rapid detection of hypochlorous acid. Chem Commun 49(71):7836–7838. https://doi.org/10.1039/C3CC44463E

    Article  CAS  Google Scholar 

  33. Yu S-Y, Hsu C-Y, Chen W-C, Wei L-F, Wu S-P (2014) A hypochlorous acid turn-on fluorescent probe based on HOCl-promoted oxime oxidation and its application in cell imaging. Sensors and Actuators B-Chemical 196:203–207. https://doi.org/10.1016/j.snb.2014.01.121

    Article  CAS  Google Scholar 

  34. Aubry JM, Cazin B, Duprat F (1989) Chemical sources of singlet oxygen .3. Peroxidation of water-soluble singlet oxygen carriers with the hydrogen-peroxide molybdate system. J Org Chem 54(3):726–728. https://doi.org/10.1021/jo00264a046

    Article  CAS  Google Scholar 

  35. Umezawa N, Tanaka K, Urano Y, Kikuchi K, Higuchi T, Nagano T (1999) Novel fluorescent probes for singlet oxygen. Angewandte Chemie-International Edition 38(19):2899–2901. https://doi.org/10.1002/(sici)1521-3773(19991004)38:19<2899::aid-anie2899>3.0.co;2-m

    Article  PubMed  CAS  Google Scholar 

  36. Setsukinai K, Urano Y, Kakinuma K, Majima HJ, Nagano T (2003) Development of novel fluorescence probes that can reliably detect reactive oxygen species and distinguish specific species. J Biol Chem 278(5):3170–3175. https://doi.org/10.1074/jbc.M209264200

    Article  PubMed  Google Scholar 

  37. Fenton HJH (1894) LXXIII.-oxidation of tartaric acid in presence of iron. J Chem Soc Trans 65 (0):899–910. https://doi.org/10.1039/CT8946500899

  38. Sun Z-N, Liu F-Q, Chen Y, Tam PKH, Yang D (2008) A highly specific BODIPY-based fluorescent probe for the detection of hypochlorous acid. Org Lett 10(11):2171–2174. https://doi.org/10.1021/ol800507m

    Article  PubMed  CAS  Google Scholar 

  39. Chen Y, Jiang J (2011) 4-(4,4-Difluoro-1,3,5,7-tetramethyl-3a-aza-4a-azonia-4-borata-s-indacen-8-yl)benzonitrile. Acta Crystallographica Section E-Structure Reports Online 67:O908–U831. https://doi.org/10.1107/s1600536811009457

    Article  PubMed Central  CAS  Google Scholar 

  40. Srivastava RM, Brinn IM, MachucaHerrera JO, Faria HB, Carpenter GB, Andrade D, Venkatesh CG, deMorais LPF (1997) Benzamidoximes: Structural, conformational and spectroscopic studies .1. J Mol Struct 406(1–2):159–167. https://doi.org/10.1016/s0022-2860(96)09452-5

    Article  CAS  Google Scholar 

  41. S-s K, H-s Z, H-l L, Wang H-b, Wang P-l (2007) 4-chlorobenzamidoxime. Acta Crystallographica Section E-Structure Reports Online 63:O4698–U4937. https://doi.org/10.1107/s1600536807057273

    Article  Google Scholar 

  42. Long GL, Winefordner JD (1983) Limit of detection. Analytical chemistry 55 (7):A712−+. https://doi.org/10.1021/ac00258a001

  43. Goswami S, Maity S, Maity AC, Das AK (2014) Fluorometric and naked-eye detectable dual signaling chemodosimeter for hypochlorite. Sensors Actuators B Chem 204:741–745. https://doi.org/10.1016/j.snb.2014.08.024

    Article  CAS  Google Scholar 

  44. Goswami S, Paul S, Manna A (2013) Highly reactive (<1 min) ratiometric "naked eye" detection of hypochlorite with real application in tap water. Dalton Trans 42(28):10097–10101. https://doi.org/10.1039/C3DT51238J

    Article  PubMed  CAS  Google Scholar 

  45. Li G, Ji D, Zhang S, Li J, Li C, Qiao R (2017) A mitochondria-targeting fluorescence turn-on probe for hypochlorite and its applications for in vivo imaging. Sensors Actuators B Chem 252:127–133. https://doi.org/10.1016/j.snb.2017.05.138

    Article  CAS  Google Scholar 

  46. Li J, Yin C, Liu T, Wen Y, Huo F (2017) A new mechanism-based fluorescent probe for the detection of ClO− by UV–vis and fluorescent spectra and its applications. Sensors and actuators B: chemical 252 (supplement C):1112-1117. https://doi.org/10.1016/j.snb.2017.07.171

  47. Reja SI, Bhalla V, Sharma A, Kaur G, Kumar M (2014) A highly selective fluorescent probe for hypochlorite and its endogenous imaging in living cells. Chem Commun 50(80):11911–11914. https://doi.org/10.1039/C4CC05356G

    Article  CAS  Google Scholar 

  48. Shen S-L, Zhang X-F, Ge Y-Q, Zhu Y, Cao X-Q (2018) A novel ratiometric fluorescent probe for the detection of HOCl based on FRET strategy. Sensors and actuators B: chemical 254 (supplement C):736-741. https://doi.org/10.1016/j.snb.2017.07.158

  49. Tang Z, Ding X-L, Liu Y, Zhao Z-M, Zhao B-X (2015) A new probe based on rhodamine B and benzothiazole hydrazine for sensing hypochlorite in living cells and real water samples. RSC Adv 5(121):99664–99668. https://doi.org/10.1039/C5RA20188H

    Article  CAS  Google Scholar 

  50. Wang Q, Liu C, Chang J, Lu Y, He S, Zhao L, Zeng X (2013) Novel water soluble styrylquinolinium boronic acid as a ratiometric reagent for the rapid detection of hypochlorite ion. Dyes and pigments 99(3):733–739. https://doi.org/10.1016/j.dyepig.2013.06.019

    Article  CAS  Google Scholar 

  51. Yuan L, Lin W, Song J, Yang Y (2011) Development of an ICT-based ratiometric fluorescent hypochlorite probe suitable for living cell imaging. Chem Commun 47(47):12691–12693. https://doi.org/10.1039/C1CC15762K

    Article  CAS  Google Scholar 

  52. Gai L, Mack J, Liu H, Xu Z, Lu H, Li Z (2013) A BODIPY fluorescent probe with selective response for hypochlorous acid and its application in cell imaging. Sensors and actuators B: chemical 182:1–6. https://doi.org/10.1016/j.snb.2013.02.106

    Article  CAS  Google Scholar 

  53. Shi J, Li Q, Zhang X, Peng M, Qin J, Li Z (2010) Simple triphenylamine-based luminophore as a hypochlorite chemosensor. Sensors and actuators B: chemical 145(1):583–587. https://doi.org/10.1016/j.snb.2009.11.003

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by National Natural Science Foundation of China (21571088)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suwen Chen.

Electronic supplementary material

ESM 1

(DOCX 19 kb)

Table S1

Comparison of probes for the detection of ClO- (DOCX 12 kb)

Fig. S1

Plot of fluorescence intensity I (at 512 nm) versus [ClO] for probe AO-BODIPY (5 μM) in HEPES-EtOH solution (20 mM HEPES, 1/9, v/v, pH = 7.0, λex = 470 nm) (PNG 85 kb)

High Resolution Image (TIF 276 kb)

Fig. S2

The normalized absorption and emission spectra of AO-BODIPY (5 μM) in HEPES-EtOH solution (20 mM HEPES, 1/9, v/v, pH = 7.0, λex = 470 nm) (PNG 107 kb)

High Resolution Image (TIF 297 kb)

Fig. S3

The absorbance of AO-BODIPY (5 μM) at 500 nm as a function of concentrations of ClO- in HEPES-EtOH solution (20 mM HEPES, 1/9, v/v, pH = 7.0) (PNG 98 kb)

High Resolution Image (TIF 277 kb)

Fig. S4

Absorption spectra of AO-BODIPY (5 μM) upon addition of different ions and ROS (20 equiv) in HEPES-EtOH solution (20 mM HEPES, 1/9, v/v, pH = 7.0) (PNG 212 kb)

High Resolution Image (TIF 383 kb)

Fig. S5

The ESI-MS spectrum of the products separated from the reaction of AO-BODIPY with NaClO (10 equiv) in HEPES-EtOH solution (20 mM HEPES, 1/9, v/v, pH = 7.0) at room temperature (PNG 1396 kb)

High Resolution Image (TIF 104 kb)

Fig. S6

The 1H NMR spectrum of AO-BODIPY in d6-DMSO (PNG 411 kb)

High Resolution Image (TIF 350 kb)

Fig. S7

The 13C NMR spectrum of AO-BODIPY in d6-DMSO (PNG 397 kb)

High Resolution Image (TIF 306 kb)

Fig. S8

The HRMS spectrum of AO-BODIPY (PNG 435 kb)

High Resolution Image (TIF 67 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Li, B., Jiang, C. et al. A BODIPY Based Fluorescent Probe for the Rapid Detection of Hypochlorite. J Fluoresc 28, 933–941 (2018). https://doi.org/10.1007/s10895-018-2255-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-018-2255-y

Keywords

Navigation