Skip to main content
Log in

Determination of Myriocin in Natural and Cultured Cordyceps cicadae Using 9-Fluorenylmethyl Chloroformate Derivatization and High-Performance Liquid Chromatography with UV-Detection

  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

A simple and sensitive reversed-phase liquid chromatographic method, based on the precolumn derivatization with 9-fluorenylmethyl chloroformate, was developed for the determination of myriocin. The derivatization reaction was performed in organic solvents of pyridine and tetrahydrofuran at 40°C. Several factors influencing the derivative yield were investigated and optimized. The formed derivative was stable for more than 24 h at room temperature. The detection wavelength was 262 nm. The system offered the following analytical parameters: the limit of detection was 0.045 µg ml−1, the linear correlation coefficient was 0.9963 and the linear range response was from 2.0 to 500.0 µg ml−1. The precision of the method was <2.0%. As a preliminary application, the method has been successfully applied to the determination of myriocin in natural and cultured Cordyceps cicadae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Aragozzini, P. L. Manachini, R. Craveri, B. R. Rindone, and C. Scolastico, Tetrahedron, 1972, 13, 5493.

    Article  Google Scholar 

  2. T. Fujita, K. Inoue, S. Yamamoto, T. Ikumoto, S. Sasaki, R. Toyama, K. Chiba, Y. Hoshino, and T. Okumoto, J. Antibiot., 1994, 47, 208.

    Article  CAS  Google Scholar 

  3. S. Sasaki, R. Hashimoto, M. Kiuchi, K. Inoue, T. Ikumoto, R. Hirose, K. Chiba, Y. Hoshino, T. Okumoto, and T. Fujita, J. Antibiot., 1994, 47, 420.

    Article  CAS  Google Scholar 

  4. D. Kluepfel, J. Bagli, H. Baker, M. P. Charest, A. Kudelski, S. N. Sehgal, and C. Vezina, J. Antibiot., 1972, 25, 109.

    Article  CAS  Google Scholar 

  5. J. F. Bagli, D. Kluepfel, and M. St-Jacques, J. Org. Chem., 1973, 38, 1253.

    Article  Google Scholar 

  6. T. Fujita, K. Inoue, S. Yamamoto, T. Ikumoto, S. Sasaki, R. Toyama, K. Chiba, Y. Hoshino, and T. Okumoto, Abstracts of Papers of 17 IUPAC International Symposium on the Chemistry of Natural Products, 1990, New Delhi, 68.

  7. K. Adachi, T. Kohara, N. Nakao, M. Arita, K. Chiba, T. Mishina, S. Sasaki, and T. Fujita, Bioorg. Biomed. Chem. Lett., 1995, 5, 853.

    Article  CAS  Google Scholar 

  8. T. Fujita, M. Yoneta, R. Hirose, S. Sasaki, K. Inoue, M. Kiuchi, S. Hirase, H. Sakamoto, and M. Arita, J. Med. Chem., 1996, 39, 4451.

    Article  CAS  Google Scholar 

  9. M. Kiuchi, K. Adachi, T. Kohara, M. Minoguchi, T. Hanano, Y. Aoki, T. Mishina, M. Arita, N. Nakao, M. Ohtsuki, Y. Hoshino, K. Teshima, K. Chiba, S. Sasaki, and T. Fujita, J. Med. Chem., 2000, 43, 2946.

    Article  CAS  Google Scholar 

  10. K. Chiba, Y. Hoshino, C. Suzuki, Y. Masubuchi, Y. Yanagawa, M. Ohtsuki, S. Sasaki, and T. Fujita, Transplant. Proc., 1996, 28, 1056.

    CAS  PubMed  Google Scholar 

  11. Y. Hoshino, Y. Yanagawa, M. Ohtsuki, S. Nakayama, T. Hashimoto, and K. Chiba, Transplant. Proc., 1999, 31, 1224.

    Article  CAS  Google Scholar 

  12. D. S. Im, Trends Pharmacol. Sci., 2003, 24, 2.

    Article  CAS  Google Scholar 

  13. R. Bucci, J. Am. Clin. Nutr., 2000, 72, 624S.

    Article  CAS  Google Scholar 

  14. S. Ukai, S. Matsuura, C. Hara, T. Kiho, and K. Hirose, Carbohydr. Res., 1982, 101, 109.

    Article  CAS  Google Scholar 

  15. S. Ukai, T. Kiho, C. Hara, M. Morita, A. Goto, N. Imaizumi, and Y. Hasegawa, Chem. Pharm. Bull., 1983, 31, 741.

    Article  CAS  Google Scholar 

  16. S. P. Li, P. Li, C. M. Lai, Y. X. Gong, K. K. W. Kan, T. T. X. Dong, K. W. K. Tsim, and Y. T. Wang, J. Chromatogr., A, 2004, 1036, 239.

    Article  CAS  Google Scholar 

  17. H. Fan, S. P. Li, J. J. Xiang, C. M. Lai, F. Q. Yang, J. L. Gao, and Y. T. Wang, Anal. Chim. Acta, 2006, 567, 218.

    Article  CAS  Google Scholar 

  18. R. T. Riley and R. D. Plattner, Methods Enzymol., 2000, 311, 348.

    Article  CAS  Google Scholar 

  19. R. A. Bank, E. J. Jansen, B. Beekman, and J. M. Koppele, Anal. Biochem., 1996, 240, 167.

    Article  CAS  Google Scholar 

  20. N. M. Brito, S. Navickiene, L. Polese, E. F. G. Jardim, R. B. Abakerli, and M. L. Ribeiro, J. Chromatogr., A, 2002, 957, 201.

    Article  CAS  Google Scholar 

  21. F. J. López, E. Pitarch, S. Egea, J. Beltran, and F. Hernández, Anal. Chim. Acta, 2001, 433, 217.

    Article  Google Scholar 

  22. X. Zhu, J. Cai, J. Yang, and Q. Su, Carbohydr. Res., 2005, 340, 1732.

    Article  CAS  Google Scholar 

  23. P. C. Abhilash, S. Jamil, and N. Singh, J. Chromatogr., A, 2007, 1176, 43.

    Article  CAS  Google Scholar 

  24. Z. Zhang, R. Zhang, and G. J. Liu, J. Chromatogr., A, 1996, 730, 107.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiawen Yu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, J., Xu, H., Mo, Z. et al. Determination of Myriocin in Natural and Cultured Cordyceps cicadae Using 9-Fluorenylmethyl Chloroformate Derivatization and High-Performance Liquid Chromatography with UV-Detection. ANAL. SCI. 25, 855–859 (2009). https://doi.org/10.2116/analsci.25.855

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.25.855

Navigation