Skip to main content
Log in

Development and Validation of the UV-Spectrophotometric Method for the Determination of Cordycepin, a Nucleoside

  • Published:
Journal of Applied Spectroscopy Aims and scope

The primary, bioactive component of Cordyceps militaris, known as cordycepin (3'-deoxyadenosine), has been utilized extensively as a traditional medicinal ingredient and a nutritious diet in Asian nations. To determine the amount of cordycepin in the C. militaris, high-performance liquid chromatography (HPLC) is shown to be an effective, sensitive, and straightforward analytical technique. Other methods for estimating cordycepin include near infrared spectroscopy and capillary electrophoresis–mass spectrometry. The UV-Vis spectroscopy approach was used to quantify cordycepin, and the results were statistically confirmed and compared with an HPLC method. For linearity, repeatability, precision, reproducibility, limit of detection and limit of quantification, the method was verified. The established approach can be utilized for routine, quality control analysis of cordycepin, as it is easy to use, sensitive, accurate, precise, repeatable, and most importantly, cost-effective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. M. Twaij and M. N. Hasan, Int. J. Plant Biol., 13, 4 (2022).

    Article  Google Scholar 

  2. M. K. Patel, S. Pandey, M. Kumar, M. I. Haque, S. Pal, and N. S. Yadav, Plants, 10, 1 (2021).

    Article  Google Scholar 

  3. L. Wang, H. Yan, B. Zeng, and Z. Hu, Bioengineering, 9, 1 (2022).

    Google Scholar 

  4. H. S. Cunningham, K. G. Manson, and W. Spring, Nature, 949 (1950).

  5. A. M. Sugar and R. P. M. C. Caffrey, Antimicrob. Agents Chemother., 42, 1424 (1998).

    Article  Google Scholar 

  6. H. S. Tuli, S. S. Sandhu, K. Dharambir, and A. K. Sharma, World J. Pharm. Pharm. Sci., 3, 1525 (2014).

    Google Scholar 

  7. K. Nakamura, K. Shinozuka, and N. Yoshikawa, J. Pharmacol. Sci., 127, 53 (2015).

    Article  Google Scholar 

  8. H. J. Cho, J. Y. Cho, M. H. Rhee, C. R. Lim, and H. J. Park, J. Pharm. Pharmacol., 58, 1677 (2006).

    Article  Google Scholar 

  9. X. Ying, L. Peng, H. Chen, Y. Shen, K. Yu, and S. Cheng, Int. Orthop., 38, 1519 (2014).

    Article  Google Scholar 

  10. S. Shin, S. Lee, J. Kwon, S. Moon, S. Lee, C.-K. Lee, K. Cho, N.-J. Ha, and K. Kim, Immune Netw., 9, 98 (2009).

    Article  Google Scholar 

  11. P. Guo, Q. Kai, J. Gao, Z. qin Lian, C. ming Wu, C. ai Wu, and H. bo Zhu, J. Pharmacol. Sci., 113, 395 (2010).

  12. Z. Zhang, K. Li, Z. Zheng, and Y. Liu, BMC Pharmacol. Toxicol., 23, 1 (2022).

    Google Scholar 

  13. J. Wang, H. Chen, W. Li, and L. Shan, J. Biochem. Mol. Toxicol., 35, 1 (2021).

    Google Scholar 

  14. H. B. Li, J. K. Chen, Z. X. Su, Q. L. Jin, L. W. Deng, G. Huang, and J. N. Shen, Cancer Cell Int., 21, 1 (2021).

    Article  Google Scholar 

  15. A. Panya, P. Songprakhon, S. Panwong, K. Jantakee, T. Kaewkod, Y. Tragoolpua, N. Sawasdee, V. Sanghiran Lee, P. Nimmanpipug, and P. T. Yenchitsomanus, Molecules, 26 (2021).

  16. T. H. Hsu, L. H. Shiao, C. Hsieh, and D. M. Chang, Food Chem., 78, 463 (2002).

    Article  Google Scholar 

  17. J.-H. Xiao and Y. Q. Q. Xiong, Recent Pat. Biotechnol., 7, 153 (2015).

    Google Scholar 

  18. Y.-M. L. Hankun Hu, Ling Xiao, Baogen Zheng, and Xin Wei, Anal. Bioanal. Chem., 407, 139 (2016).

  19. B.-Q. J. Jiang-Feng Song, and Chun-Quan Liu, J. Chem. Technol. Biotechnol., 83, 1163 (2008).

  20. H. Fan, S. P. Li, J. J. Xiang, C. M. Lai, F. Q. Yang, J. L. Gao, and Y. T. Wang, Anal. Chim. Acta, 567, 218 (2006).

    Article  Google Scholar 

  21. Y. S. Rie Ikeda, Miho Nishimura, and M. W. K. Nakashima, Biomed. Chromatogr., 22, 630 (2008).

  22. L. Y. Wang, X. Liang, J. Zhao, Y. Wang, and S. P. Li, J. AOAC Int., 102, Article ID 741 (2019).

  23. N. Singpoonga, R. Rittiron, B. Seang-On, P. Chaiprasart, and Y. Bantadjan, ACS Omega, 5, 27235 (2020).

    Article  Google Scholar 

  24. F. Q. Yang, L. Ge, J. W. H. Yong, S. N. Tan, and S. P. Li, J. Pharm. Biomed. Anal., 50, 307 (2009).

    Article  Google Scholar 

  25. P. Alam, F. Shakeel, M. H. Alqarni, A. I. Foudah, T. M. Aljarba, A. Alam, M. M. Ghoneim, S. M. B. Asdaq, S. Alshehri, and M. Iqbal, Separations, 10 (2023).

  26. W. Li, Z. Qian, Y. Zou, G. Tan, W. Li, Q. Lei, R. Li, and D. Lan, Acta Chromatogr., 1 (2022).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alok Malaviya.

Additional information

Abstract of article is published in Zhurnal Prikladnoi Spektroskopii, Vol. 91, No. 1, p. 169, January–February, 2024.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krishna, K.V., Devasia, J. & Malaviya, A. Development and Validation of the UV-Spectrophotometric Method for the Determination of Cordycepin, a Nucleoside. J Appl Spectrosc 91, 228–235 (2024). https://doi.org/10.1007/s10812-024-01710-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-024-01710-2

Keywords

Navigation