Skip to main content
Log in

Silver Nanoparticles for a Colorimetric Determination of Putrescine and Cadaverine in Biological Samples

  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

A convenient and uncomplicated scheme has been projected for the quantitative determination of essential diamines putrescine (PUT) and cadaverine (CAD) via sodium dodecyl sulfate protected silver nanoparticles (SDS-AgNPs). This scheme is based on the chemical interaction of a SDS-AgNPs probe with PUT and CAD, leading to a color change from yellow to red or reddish brown. The interaction was investigated through different techniques such as using a UV-visible spectrophotometer, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), dynamic light scattering spectroscopy (DLS) and the zeta potential. Both amines possess a close resemblance in structure (except for the addition of one more methylene group in CAD), and no any distinguishable color change was noted. However, the maximum absorption band at 580 and 600 nm was demonstrated for PUT and CAD correspondingly. The methodical response was observed at absorption ratios of 580/410 and 600/410 nm, with the linear regression within 4–12 and 6–14 μg/mL for PUT and CAD. The detection limits calculated for both the diamines PUT and CAD were 0.333 and 1.638 μg/mL. The scheme was successfully applied for determinations in biological samples, including spiked blood plasma and urine. Putrescine exhibited % recovery within 95.717–105.200%, while cadaverine was within 95.940–105.109%, respectively. The scheme was reproducible and precise with inter-day RSD (n = 5) within 1.126, 0.018% and the intraday RSD (n= 5) was within 0.005, 0.002% for PUT and CAD, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. D. RioLargar, B. Redruello, D. M. Linares, V. Ladero, P. Ruas-Madiedo, M. Fernandez, and M. A. Alvarez, Sci. Rep., 2019, 9, 1.

    Article  Google Scholar 

  2. A. Önal, Food Chem., 2007, 103, 1475.

    Article  Google Scholar 

  3. A. Halàsz, A. Barath, L. Simon-Sarkadi, and W. Holzapfel, Trends Food Sci. Technol., 1994, 5, 42.

    Article  Google Scholar 

  4. V. Ladero, M. Coton, M. Fernández, N. Buron, M. C. Martin, H. Guichard, E. Coton, and M. A. Alvarez, Food Microb., 2011, 28, 554.

    Article  CAS  Google Scholar 

  5. M. Marino, M. Maifreni, S. Moret, and G. Rondinini, Lett. Appl. Microb., 2000, 31, 169.

    Article  CAS  Google Scholar 

  6. L. Prester, Food Addit. Contam., 2011, 28, 1547.

    Article  CAS  Google Scholar 

  7. G. Suzzi and F. Gardini, Int. J. Food Microb., 2003, 88, 41.

    Article  CAS  Google Scholar 

  8. B. Ten Brink, C. Damink, H. M. L. J. Joosten, and J. H. J. Huis In’t Veld, Int. J. Food Microb., 1990, 11, 73.

    Article  CAS  Google Scholar 

  9. N. Jornet-Martinez, M. González-Béjar, Y. Moliner-Martínez, P. Campins-Falco, and J. Pérez-Prieto, Anal. Chem., 2014, 86, 1347.

    Article  CAS  PubMed  Google Scholar 

  10. Y. Chen, J. Zhang, Y. Gao, J. Lee, H. Chen, and Y. Yin, Biosens. Bioelectron., 2015, 72, 306.

    Article  CAS  PubMed  Google Scholar 

  11. M. Y. Khuhawar and G. A. Qureshi, J. Chromatogr. B, 2001, 764, 385.

    Article  CAS  Google Scholar 

  12. L. F. Bjeldanes, D. E. Schutz, and M. M. Morris, Food Cosmet. Toxicol., 1978, 16, 157.

    Article  CAS  PubMed  Google Scholar 

  13. J. Donthuan, S. Yunchalard, and S. Srijaranai, J. Sep. Sci., 2014, 37, 3164.

    Article  CAS  PubMed  Google Scholar 

  14. A. Calvo-Pérez, O. Domínguez-Renedo, M. A. Alonso-Lomillo, and M. J. Arcos-Martínez, Microchim. Acta, 2013, 180, 253.

    Article  Google Scholar 

  15. M. Saaid, B. Saad, N. H. Hashim, A. S. M. Ali, and M. I. Saleh, Food Chem., 2009, 113, 1356.

    Article  CAS  Google Scholar 

  16. M. Mohammadi, M. Kamankesh, Z. Hadian, A. M. Mortazavian, and A. Mohammadi, Chromatographia, 2017, 80, 119.

    Article  CAS  Google Scholar 

  17. M. Y. Khuhawar, A. A. Memon, P. D. Jaipal, and M. I. Bhanger, J. Chromatogr. B, 1999, 723, 17.

    Article  CAS  Google Scholar 

  18. J. Plotka-Wasylka, V. Simeonov, and J. Namiesnik, J. Chromatogr. A, 2016, 1453, 10.

    Article  CAS  PubMed  Google Scholar 

  19. J. Lapa-Guimarães and J. Pickova, J. Chromatogr. A, 2004, 1045, 223.

    Article  PubMed  Google Scholar 

  20. M. S. Steiner, R. J. Meier, C. Spangler, A. Duerkop, and O. S. Wolfbeis, Microchim. Acta, 2009, 67, 259.

    Article  Google Scholar 

  21. V. Valderrey, A. Bonasera, S. Fredrich, and S. Hecht, Angew. Chem. Int. Ed., 2017, 56, 1914.

    Article  CAS  Google Scholar 

  22. J. Tu, S. Sun, and Y. Xu, Chem. Commun., 2016, 52, 1040.

    Article  CAS  Google Scholar 

  23. K. M. A. El-Nour, E. T. A. Salam, H. M. Soliman, and A. S. Orabi, Nanoscale Res. Lett., 2017, 12, 231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Y. He, X. E. Zhao, R. Wang, N. Wei, J. Sun, J. Dang, G. Chen, Z. Liu, S. Zhu, and J. You, J. Agric. Food Chem., 2016, 64, 8225.

    Article  CAS  PubMed  Google Scholar 

  25. R. Romero-Gonzalez, M. I. Alarcon-Flores, J. L. M. Vidal, and A. G. Frenich, J. Agric. Food Chem., 2012, 60, 5324.

    Article  CAS  PubMed  Google Scholar 

  26. R. L. Self and W. H. Wu, J. Food Compost. Anal., 2012, 27, 169.

    Article  CAS  Google Scholar 

  27. A. Önal, S. E. K. Tekkeli, and C. Önal, Food Chem., 2013, 138, 509.

    Article  PubMed  Google Scholar 

  28. R. Zhang, N. Li, J. Sun, and F. Gao, J. Agric. Food Chem., 2015, 63, 8947.

    Article  CAS  PubMed  Google Scholar 

  29. W. Zhang, Y. Tang, J. Liu, L. Jiang, W. Huang, F. W. Huo, and D. Tian, J. Agric. Food Chem., 2015, 63, 39.

    Article  CAS  PubMed  Google Scholar 

  30. H. Haick, Y. Y. Broza, P. Mochalski, V. Ruzsanyi, and A. Amann, Chem. Soc. Rev., 2014, 43, 1423.

    Article  CAS  PubMed  Google Scholar 

  31. Y. Y. Broza and H. Haick, Nanomedicine—UK, 2013, 8, 785.

    Article  CAS  Google Scholar 

  32. A. P. Turner and N. Magan, Nat. Rev. Microbiol., 2004, 2, 161.

    Article  CAS  PubMed  Google Scholar 

  33. S. A. Ghoto, M. Y. Khuhawar, and T. M. Jahangir, Anal. Sci., 2019, 35, 631.

    Article  CAS  PubMed  Google Scholar 

  34. N. Kumar and R. N. Goyal, Sens. Actuators, B, 2018, 268, 383.

    Article  CAS  Google Scholar 

  35. A. C. Burdusel, O. Gherasim, A. M. Grumezescu, L. Mogoanta, A. Ficai, and E. Andronescu, Nanomaterials, 2018, 8, 681.

    Article  PubMed  PubMed Central  Google Scholar 

  36. F. Porcaro, L. Carlini, A. Ugolini, D. Visaggio, P. Visca, I. Fratoddi, I. Venditti, C. Menegini, L. Simon Elliott, C. Mari I, W. Olszewski, N. Ramanan, I. Luisetto, and C. Battocchio, Materials, 2016, 9, 1028.

    Article  PubMed  PubMed Central  Google Scholar 

  37. M. Bordoloi, R. K. Sahoo, J. Tamuli, S. Saikia, and P. P. Dutta, Nano, 2020, 15, Article number 2030001.

  38. L. Carlini, C. Fasolato, P. Postorino, I. Fratoddi, I. Venditte, G. Testa, and C. Battocchio, Colloids Surf., A, 2017, 532, 183.

    Article  CAS  Google Scholar 

  39. P. Prosposito, L. Burratti, A. Bellingeri, G. Protano, C. Valerie, I. Corsi, C. Battocchio, G. Iucci, L. Tortola, V. Secchi, S. Franchi, and I. Venditti, Nanomaterials, 2019, 9, 1353.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. A. Centeno, S. Rahmah Aid, and F. Xie, Chemosensors, 2018, 6, 4.

    Article  Google Scholar 

  41. Q. Y. Chen, S. L. Xiao, S. Q. Shi, and L. P. Cai, Polymers, 2020, 12, 440.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. P. Prosposito, L. Burratti, and I. Venditti, Chemsensors, 2020, 8, 26.

    Article  CAS  Google Scholar 

  43. M. L. Firdaus, A. Parian, N. Meileza, M. Hitsmi, and R. Elvia, Chemosensors, 2019, 7, 25.

    Article  CAS  Google Scholar 

  44. K. C. Song, S. M. Lee, T. S. Park, and B. S. Lee, Korean J. Chem. Eng., 2009, 26, 153.

    Article  CAS  Google Scholar 

  45. L. Qi, Z. Xu, X. Jiang, C. Hu, and X. Zou, Carbohydr. Res., 2004, 339, 2693.

    Article  CAS  PubMed  Google Scholar 

  46. S. A. Ghoto, M. Y. Khuhawar, and T. M. Jahangir, Journal of Nanostructure in Chemistry, 2019, 9, 77.

    Article  CAS  Google Scholar 

  47. S. Ribeiro, N. Hussain, and A. T. Florence, Int. J. Pharm., 2005, 298, 354.

    Article  CAS  PubMed  Google Scholar 

  48. N. Seiler, “Selected Topics from Neurochemistry”, 1985, Pergamon, 147.

    Book  Google Scholar 

  49. C. Yuan, R. Liu, S. Wang, G. Han, M. Y. Han, C. Jiang, and Z. Zhang, J. Mater. Chem., 2011, 21, 16264.

    Article  CAS  Google Scholar 

  50. K. A. Rawat, J. R. Bhamore, R. K. Singhal, and S. K. Kailasa, Biosens. Bioelectron., 2017, 88, 71.

    Article  CAS  PubMed  Google Scholar 

  51. J. Wang, Z. L. Wu, H. Z. Zhang, Y. F. Li, and C. Z. Huang, Talanta, 2017, 167, 193.

    Article  CAS  PubMed  Google Scholar 

  52. S. S. Gowda, S. Rajasowmiya, V. Vadivel, S. B. Devi, A. C. Jerald, S. Marimuthu, and N. Devipriya, Toxicol. in Vitro, 2018, 52, 170.

    Article  Google Scholar 

  53. A. Contino, G. Maccarrone, M. Zimbone, R. Reitano, P. Musumeci, L. Calcagno, and I. P. Oliveri, J. Colloid Interface Sci., 2016, 462, 216.

    Article  CAS  PubMed  Google Scholar 

  54. X. Jiang and A. Yu, J. Nanosci. Nanotechnol., 2010, 10, 7643.

    Article  CAS  PubMed  Google Scholar 

  55. H. Li and Y. Bian, Nanotechnology, 2009, 20, 145502.

    Article  PubMed  Google Scholar 

  56. C. Yuan, R. Liu, S. Wang, G. Han, M. Y. Han, C. Jiang, and Z. Zhang, J. Mater. Chem., 2011, 21, 16264.

    Article  CAS  Google Scholar 

  57. D. S. Singare, S. Marella, K. Gowthamrajan, G. T. Kulkarni, R. Vooturi, and P. S. Rao, Int. J. Pharm., 2010, 402, 213.

    Article  CAS  PubMed  Google Scholar 

  58. R. H. Muller, C. Jacobs, and O. Kayser, Adv. Drug Delivery Rev., 2001, 47, 3.

    Article  CAS  Google Scholar 

  59. R. A. E. F. Hamouda, M. A. El-Mongy, and K. F. Eid, Int. J. Pharmacol., 2018, 14, 359.

    Article  CAS  Google Scholar 

  60. D. E. Koppel, J. Chem. Phys., 1972, 57, 4814.

    Article  CAS  Google Scholar 

  61. B. J. Berne and R. Pecora, “Dynamic Light Scattering with Applications to Chemistry, Biology and Physics”, 2000, Dover Publications Inc, Minneola.

    Google Scholar 

Download references

Acknowledgments

We are highly thankful to the Institute of Advanced Research Studies in Chemical Sciences, University of Sindh Jamshoro, for supporting this Research project.

Author information

Authors and Affiliations

Authors

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghoto, S.A., Khuhawar, M.Y. Silver Nanoparticles for a Colorimetric Determination of Putrescine and Cadaverine in Biological Samples. ANAL. SCI. 37, 267–274 (2021). https://doi.org/10.2116/analsci.20P153

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.20P153

Keywords

Navigation