Skip to main content
Log in

Photoluminescent Ozone Sensor with Enhanced Sensitivity by Using CdSe/ZnS Quantum Dots Modified with Gold and Platinum

  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

We report photoluminescence-based ozone sensing using composite films composed of gold or platinum and red-emitting CdSe/ZnS core-shell quantum dots. The sensing efficiency of quantum dots is enhanced by the addition of noble metals. The composite films undergo reversible changes in photoluminescence intensity (measured at excitation/emission wavelengths of 365/652–659 nm) in the presence of ppm levels of ozone in air at 25°C and at atmospheric pressure. The sensitivity of the composite films does not saturate with ozone in the 0.5–200 ppm concentration range. When compared with a quantum dot-only film, the composite films show higher sensitivities to 0.5 ppm ozone of 27% (gold) and 43% (platinum). When compared with a quantum dot-only film, the photoluminescence of the gold- or platinum-palladium alloy-based film recovers faster after the removal of ozone in the surrounding atmosphere. Thus, platinum- or gold-conjugated quantum-dot films form sensor modules for the reversible and highly sensitive detection of ozone under the tested ambient conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Int. Ozone Assoc., http://www.ioa-ea3g.org/ozonethemes/ozone-and-its-application.html.

  2. K. Eguchi, in “Gas Sensors”, ed. G. Sberveglieri, 1992, Kluwer, Dordrecht, 307.

  3. J. Shi, Y. Zhu, X. Zhang, W. R. G. Baeyens, and A. M. García-Campafía, TrAC, Trends Anal. Chem., 2004, 23, 351.

    Article  CAS  Google Scholar 

  4. M. Ando, TrAC, Trends Anal. Chem., 2006, 25, 937.

    Article  CAS  Google Scholar 

  5. X. D. Wang and O. S. Wolfbeis, Anal. Chem., 2016, 88, 203.

    Article  CAS  PubMed  Google Scholar 

  6. J. Hodgkinson and R. P. Tatam, Meas. Sci. Technol., 2013, 24, Paper No. 012004, 1.

    Article  Google Scholar 

  7. M. Ando, T. Kamimura, K. Uegaki, V. Biju, and Y. Shigeri, Microchim. Acta, 2016, 183, 3019.

    Article  CAS  Google Scholar 

  8. M. Ando, V. Biju, and Y. Shigeri, Anal. Sci., 2018, 34, 263.

    Article  CAS  PubMed  Google Scholar 

  9. M. Petersson, D. Jonsson, H. Persson, N. Cruise, and B. Andersson, J. Catai., 2006, 238, 321.

    Article  CAS  Google Scholar 

  10. S. D. Puckett, J. A. Heuser, J. D. Keith, W. U. Spendel, and G. E. Pacey, Talanta, 2005, 66, 1242.

    Article  CAS  PubMed  Google Scholar 

  11. F. Wu, M. Wang, Y. Lu, X. Zhang, and C. Yang, Build. Environ., 2017, 115, 25.

    Article  CAS  Google Scholar 

  12. T. Batakliev, G. Tyuliev, V. Georgiev, M. Anachkov, A. Eliyas, and S. Rakovsky, Ozone: Sci. Eng., 2015, 37, 216.

    Article  CAS  Google Scholar 

  13. M. Ando, T. Kobayashi, S. Iijima, and M. Haruta, Sens. Actuators, B, 2003, 96, 589.

    Article  CAS  Google Scholar 

  14. M. Ando, T. Kamimura, K. Uegaki, V. Biju, J. T. Damasco Ty, and Y. Shigeri, Sens. Actuators, B, 2017, 246, 1074.

    Article  CAS  Google Scholar 

  15. S. Chen, X. Pan, H. He, W. Chen, W. Dai, C. Chen, H. Zhang, P. Ding, J. Huang, B. Lu, J. Lu, and Z. Ye, Opt. Lett., 2015, 40, 2782.

    Article  CAS  PubMed  Google Scholar 

  16. S. Hu, Y. Ren, Y. Wang, J. Li, J. Qu, L. Liu, H. Ma, and Y. Tang, Beilstein J. Nanotechnol., 2019, 10, 22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. C. L. Luo, R. X. Yang, W. G. Yan, C. M. Chen, S. Y. Liu, S. J. Zhao, W. Q. Ge, Z. F. Liu, and G. Z. Jia, Materials [Basel], 2019, 12, 362.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. D. R. Jung, J. Kim, S. Nam, C. Nahm, H. Choi, J. I. Kim, J. Lee, C. Kim, and B. Park, Appl. Phys. Lett., 2011, 99, 041906-1.

  19. C. Yang, Y. Zhou, G. An, and X. Zhao, Opt. Mater., 2013, 35, 2551.

    Article  CAS  Google Scholar 

  20. Y. Matsumoto, R. Kanemoto, T. Itoh, S. Nakanishi, M. Ishikawa, and V. Biju, J. Phys. Chem., C, 2008, 112, 1345.

    Article  CAS  Google Scholar 

  21. D. Khmelevskaya, D. P. Shcherbinin, E. A. Konshina, M. M. Abboud, A. Dubavik, and I. A. Gladskikh, Opt. Spectrosc., 2018, 125, 731.

    Article  CAS  Google Scholar 

  22. M. Noh, T. Kim, H. Lee, C. K. Kim, S. W. Joo, and K. Lee, Coiioids Surf., A, 2010, 359, 39.

    Article  CAS  Google Scholar 

  23. Y. Zhang, J. He, P. N. Wang, J. Y. Chen, Z. J. Lu, D. R. Lu, J. Guo, C. C. Wang, and W. L. Yang, J. Am. Chem. Soc., 2006, 128, 13396.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by JSPS KAKENHI Grant Numbers 26410201 and 17K05957 (to M. A. and Y. S.), JSPS KAKENHI Grant Number 17H05243 (to V. B.), and Grant (#4: 38th and #1: 39th) from the Steel Foundation for Environmental Protection Technology (to Y. S. and M. A.). We are also grateful to Dr. Leslie Sargent Jones (Appalachian State University, Retired) for her careful reading of our manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Masanori Ando or Yasushi Shigeri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ando, M., Inagaki, K., Kawasaki, H. et al. Photoluminescent Ozone Sensor with Enhanced Sensitivity by Using CdSe/ZnS Quantum Dots Modified with Gold and Platinum. ANAL. SCI. 36, 989–995 (2020). https://doi.org/10.2116/analsci.19P490

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.19P490

Keywords

Navigation