Skip to main content
Log in

Sensing of ozone based on its quenching effect on the photoluminescence of CdSe-based core-shell quantum dots

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Thin films of CdSe-based core-shell type quantum dots (CdSe/CdZnS, CdSe/ZnS and CdSeTe/ZnS) deposited on glass substrate were found to undergo a reversible change in photoluminescence (PL) on exposure to ozone in concentrations as low as 0.1 ppm in air. PL decreased rapidly on adding ozone and fully recovered after changing back to pure air. The PL of the CdSe/ZnS quantum dots (QDs) was not quenched by pure oxygen, nitrogen, argon, carbon dioxide, and air containing hydrogen. A comparison of various CdSe-based core-shell type QDs with different emission colors showed that green-emitting QDs with smaller size were more sensitive to ozone, while red-emitting QDs (of larger size) were more resistant to high concentrations of ozone. The response time of the sensor (for a 90 % signal change) was in the order of 10–20 min. The reversible, reproducible and selective response to ozone at room temperature under atmospheric pressure suggested that these QDs have a great potential in terms of fluorescent sensing of ozone.

Thin films of CdSe-based core-shell type QDs showed reversible change in photoluminescence (PL) by O3 in concentration as low as 0.1 ppm in air at room temperature. The PL is not affected by O2, N2, Ar, CO2, or H2

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Eguchi K (1992) Optical gas sensors. In: Sberveglieri G (ed) Gas Sensors. Kluwer, Dordrecht, pp. 307–328

    Chapter  Google Scholar 

  2. Ando M (2006) Recent advances in optochemical sensors for the detection of H2, O2, O3, CO, CO2 and H2O in air. TrAC: Trends Anal Chem 25:937–948

  3. Wang XD, Wolfbeis OS (2012) Fiber-optic chemical sensors and biosensors (2008-2012). Anal Chem 85:487–508

  4. Hodgkinson J, Tatam RP (2013) Optical gas sensing: a review. Meas Sci Technol 24:Paper No. 012004, 1–95

  5. Takada T (1989) Ozone detection by In2O3 thin film gas sensor. In: Seiyama T (ed) Chemical sensor technology, vol. 2. Kodansha, Tokyo, pp 59–70

  6. Ozone and its application. Int. Ozone Assoc., http://www.ioa-ea3g.org/ozonethemes/ozone-and-its-application.html. Accessed 12 May 2016

  7. Menzel DB (1984) Ozone: an overview of its toxicity in man and animals. J Toxicol Environ Health 13:183–204

    Article  CAS  Google Scholar 

  8. Lippmann M (1989) Health effects of ozone a critical review. JAPCA: J Air Pollution Control Assoc 39:672–695

    Article  CAS  Google Scholar 

  9. Horstman DH, Levaggi DA, Appel BR, Kothny EL, Wendt JG (1989) Continuous monitoring of ozone in the atmosphere. In: Lodge JP Jr (ed) Methods of Air Sampling and Analysis, 3rd edn. Lewis, Chelsea, pp. 422–426

  10. Birdsall CM, Jenkins AC, Spadinger E (1952) Iodometric determination of ozone. Anal Chem 24:662–664

  11. (2013) Gas detection tubes and sampling handbook, 2nd edn. RAE Systems by Honeywell, TB-1001-02, p 80

  12. Straka MR, Gordon G, Pacey GE (1985) Residual aqueous ozone determination by gas diffusion flow injection analysis. Anal Chem 57:1799–1803

    Article  CAS  Google Scholar 

  13. Nederbragt GW, van der Horst A, van Duijn T (1965) Rapid ozone determination near an accelerator. Nature 206:87

    Article  CAS  Google Scholar 

  14. Bersis D, Vassiliou E (1966) A chemiluminescence method for determining ozone. Analyst 91:499–505

    Article  CAS  Google Scholar 

  15. Takada T, Suzuki K, Nakane M (1993) Highly sensitive ozone sensor. Sensors Actuators B 13:404–407

  16. Penrose W, Pan L, Stetter J, Ollison W (1995) Sensitive measurement of ozone using amperometric gas sensors. Anal Chim Acta 313:209–219

    Article  CAS  Google Scholar 

  17. Ando M, Swart C, Pringsheim E, Mirsky VM, Wolfbeis OS (2002) Optical ozone detection by use of polyaniline film. Solid State Ionics 152–153:819–822

  18. Ando M, Swart C, Pringsheim E, Mirsky VM, Wolfbeis OS (2005) Optical ozone-sensing properties of poly(2-chloroaniline), poly(N-methylaniline) and polyaniline films. Sensors Actuators B 108:528–534

  19. Weller H (1993) Colloidal semiconductor q-particles: chemistry in the transition region between solid state and molecules. Angew Chem Int Ed Eng 32:41–53

    Article  Google Scholar 

  20. Murray CB, Norris DJ, Bawendi MG (1993) Synthesis and characterization of nearly monodisperse CdE (E = S, Se, Te) semiconductor nanocrystallites. J Am Chem Soc 115:8706–8715

    Article  CAS  Google Scholar 

  21. Dabbousi BO, Rodriguez-Viejo J, Mikulec FV, Heine JR, Mattoussi H, Ober R, Jensen KF, Bawendi MG (1997) (CdSe)ZnS core-shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites. J Phys Chem B 101:9463–9475

  22. Talapin DV, Rogach AL, Kornowski A, Haase M, Weller H (2001) Highly luminescent monodisperse CdSe and CdSe/ZnS nanocrystals synthesized in a hexadecylamine-trioctylphosphine oxide-trioctylphospine mixture. Nano Lett 1:207–211

    Article  CAS  Google Scholar 

  23. Gaponik N, Talapin DV, Rogach AL, Hoppe K, Shevchenko EV, Kornowski A, Eychmüller A, Weller H (2002) Thiol-capping of CdTe nanocrystals: an alternative to organometallic synthetic routes. J Phys Chem B 106:7177–7185

    Article  CAS  Google Scholar 

  24. Bruchez M, Moronne M, Gin P, Weiss S, Alivisatos AP (1998) Semiconductor nanocrystals as fluorescent biological labels. Science 281:2013–2018

  25. Anikeeva PO, Halpert JE, Bawendi MG, Bulović V (2009) Quantum dot light-emitting devices with electroluminescence tunable over the entire visible spectrum. Nano Lett 9:2532–2536

    Article  CAS  Google Scholar 

  26. Biju V (2014) Chemical modifications and bioconjugate reactions of nanomaterials for sensing, imaging, drug delivery and therapy. Chem Soc Rev 43:744–764

    Article  CAS  Google Scholar 

  27. Wuister SF, de Mello Donegá C, Meijerink A (2004) Influence of thiol capping on the exciton luminescence and decay kinetics of CdTe and CdSe quantum dots. J Phys Chem B 108:17393–17397

  28. Zhu H, Hu MZ, Shao L, Yu K, Dabestani R, Zaman MdB, Liao S (2014) Synthesis and optical properties of thiol functionalized CdSe/ZnS (core/shell) quantum dots by ligand exchange. J Nanomater 324972:1–14

  29. Munro AM, Ginger DS (2008) Photoluminescence quenching of single CdSe nanocrystals by ligand adsorption. Nano Lett 8:2585–2590

    Article  CAS  Google Scholar 

  30. Breus VV, Heyes CD, Nienhaus GU (2007) Quenching of CdSe-ZnS core-shell quantum dot luminescence by water-soluble thiolated ligands. J Phys Chem C 111:18589–18594

    Article  CAS  Google Scholar 

  31. Jorge P, Martins MA, Trindade T, Santos JL, Farahi F (2007) Optical fiber sensing using quantum dots. Sensors 7:3489–3534

    Article  CAS  Google Scholar 

  32. Frasco MF, Chaniotakis N (2009) Semiconductor quantum dots in chemical sensors and biosensors. Sensors 9:7266–7286

    Article  CAS  Google Scholar 

  33. Saren AA, Kuznetsov SN, Kuznetsov AS, Gurtov VA (2011) Excitonic chemiluminescence in Si and CdSe nanocrystals induced by their interaction with ozone. ChemPhysChem 12:846–853

  34. Yang P, Ando M, Taguchi T, Murase N (2011) Highly luminescent CdSe/CdxZn1–xS quantum dots with narrow spectrum and widely tunable wavelength. J Phys Chem C 115:14455–14460

    Article  CAS  Google Scholar 

  35. Li C, Murase N (2005) Surfactant-dependent photoluminescence of CdTe nanocrystals in aqueous solution. Chem Lett 34:92–93

    Article  CAS  Google Scholar 

  36. Tansakul C, Lilie E, Walter ED, Rivera III F, Wolcott A, Zhang JZ, Millhauser GL, Braslau R (2010) Distance-dependent fluorescence quenching and binding of CdSe quantum dots by functionalized nitroxide radicals. J Phys Chem C 114:7793–7805

Download references

Acknowledgments

This work was supported in part by JSPS KAKENHI Grant Number 26410201 (to M. Ando and Y. Shigeri) and 15H01099 (to V. Biju), and LIXIL JS Foundation Research Grant Number 13-05 (to M. Ando).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Masanori Ando or Yasushi Shigeri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ando, M., Kamimura, T., Uegaki, K. et al. Sensing of ozone based on its quenching effect on the photoluminescence of CdSe-based core-shell quantum dots. Microchim Acta 183, 3019–3024 (2016). https://doi.org/10.1007/s00604-016-1938-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-016-1938-9

Keywords

Navigation