Skip to main content
Log in

Evaluation of two different adjuvants with immunogenic uroplakin 3A-derived peptide for their ability to evoke an immune response in mice

  • Research Article
  • Published:
European Cytokine Network

Abstract

Rationale

Organ- or tissue-specific antigens produced by normal tissue or by cancer cells could be used in cancer immunotherapy, to target the tumor. In our previous study, we induced T-cell-mediated, bladderspecific autoimmunity by targeting the bladder-specific protein Uroplakin 3A (UPK3A). UPK3A is a well-chosen target for developing an autoimmune response against bladder cancer since the antigen is also expressed in bladder tumors. To use this peptide, which was derived from the UPK3A protein in a bladder cancer vaccine study, it is necessary to induce a strong immune response. In this study, we aimed to develop a robust immune response in BALB/c mice using the well-characterized keyhole limpet hemocyanin (KLH)-conjugated peptide antigen (UPK3A 65-84) conjugated with an immunogenic carrier protein. In combination with the peptide, we used either Freund’s complete adjuvant (CFA) or CpG (cytosine-phosphate-guanine oligonucleotides) as effective adjuvants in order to overcome tumor tolerance.

Objectives

The immune response evoked by UPK3A 65-84 peptide, using two different adjuvants, was compared by detection of changes in the proliferative response of immune cells, in the cytokine profile, and in the immune cell populations.

Findings

We demonstrated that CpG, combined with KLH-UPK3A 65-84, promoted a more robust immune response, via induction of higher IL-2, IFN-γ, TNF-α, IL-17 production and activation of more immune cells (CD4+ T cells, CD8+ T cells, NK cells CD11b, CD45), than CFA and the KLHUPK3A 65-84.

Conclusion

CpG as an adjuvant combined with KLH-UPK3A 65-84 could be used in preclinical models of bladder cancer for the development of cancer immunotherapy strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jemal A, Siegel R, Ward E, et al. Cancer statistics, 2006. CA Cancer J Clin 2006; 56: 106–30.

    Article  PubMed  Google Scholar 

  2. Askeland EJ, Newton MR, O’Donnell MA, Luo Y. Bladder cancer immunotherapy: BCG and beyond. Adv Urol 2012; 2012: 181987.

    Article  PubMed Central  PubMed  Google Scholar 

  3. Schenk-Braat EA, Bangma CH. Immunotherapy for superficial bladder cancer. Cancer Immunol Immunother 2005; 54: 414–23.

    Article  PubMed  CAS  Google Scholar 

  4. Kesaraju P, Jaini R, Johnson JM, et al. Experimental autoimmune breast failure: a model for lactation insufficiency, postnatal nutritional deprivation, and prophylactic breast cancer vaccination. Am J Pathol 2012; 181: 775–84.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  5. Altuntas CZ, Jaini R, Kesaraju P, Jane-wit D, Johnson JM, Covey K, et al. Autoimmune mediated regulation of ovarian tumor growth. Gynecol Oncol 2012; 124: 98–104.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  6. Tuohy VK. A prophylactic vaccine for breast cancer? Why not? Breast Cancer Res 2010; 12: 405.

    Article  PubMed  Google Scholar 

  7. Jaini R, Kesaraju P, Johnson JM, Altuntas CZ, Jane-Wit D, Tuohy VK. An autoimmune-mediated strategy for prophylactic breast cancer vaccination. Nat Med 2010; 16: 799–803.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  8. Yu J, Lin JH, Wu XR, Sun TT. Uroplakins Ia and Ib, two major differentiation products of bladder epithelium, belong to a family of four transmembrane domain (4TM) proteins. J Cell Biol 1994; 125: 171–82.

    Article  PubMed  CAS  Google Scholar 

  9. Wu XR, Medina JJ, Sun TT. Selective interactions of UPIa and UPIb, two members of the transmembrane 4 superfamily, with distinct single transmembrane-domained proteins in differentiated urothelial cells. J Biol Chem 1995; 270: 29752–9 [Research Support, U.S. Gov’t, Non-P.H.S.Research Support, U.S. Gov’t, P.H.S.].

    Article  PubMed  CAS  Google Scholar 

  10. Deng FM, Liang FX, Tu L, et al. Uroplakin IIIb, a urothelial differentiation marker, dimerizes with uroplakin Ib as an early step of urothelial plaque assembly. J Cell Biol 2002; 159: 685–94 [Research Support, U.S. Gov’t, P.H.S.].

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  11. Moll R, Wu XR, Lin JH, Sun TT. Uroplakins, specific membrane proteins of urothelial umbrella cells, as histological markers of metastatic transitional cell carcinomas. AmJ Pathol 1995; 147: 1383–97.

    CAS  Google Scholar 

  12. Lobban ED, Smith BA, Hall GD, et al. Uroplakin gene expression by normal and neoplastic human urothelium. Am J Pathol 1998; 153: 1957–67.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  13. Izgi K, Altuntas CZ, Bicer F, et al. Uroplakin peptide-specific autoimmunity initiates interstitial cystitis/painful bladder syndrome in mice. PLoS ONE 2013; 8: e72067.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  14. Mandl SJ, Rountree RB, Dalpozzo K, et al. Immunotherapy with MVA-BN(R)-HER2 induces HER-2-specific Th1 immunity and alters the intratumoral balance of effector and regulatory T cells. Cancer Immunol Immunother 2012; 61: 19–29.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  15. Lee Y, Kwon HJ. Production of epitope-specific antibodies using peptide-CpG-ODN-liposome complex without carriers and their application as a cancer vaccine in mice. Oncoimmunology 2012; 1: 1215–7.

    Article  PubMed Central  PubMed  Google Scholar 

  16. Huijbers EJ, Femel J, Andersson K, Bjorkelund H, Hellman L, Olsson AK. The non-toxic and biodegradable adjuvant Montanide ISA 720/CpG can replace Freund’s in a cancer vaccine targeting ED-B–a prerequisite for clinical development. Vaccine 2012 5; 30: 225–30.

    Article  CAS  Google Scholar 

  17. Lubaroff DM, Karan D, Andrews MP, et al. Decreased cytotoxic T cell activity generated by co-administration of PSA vaccine and CpG ODNis associated with increased tumor protection in a mouse model of prostate cancer. Vaccine 2006; 24: 6155–62.

    Article  PubMed  CAS  Google Scholar 

  18. Saito B, Ohashi T, Togashi M, Koyanagi T. [The study of BBN induced bladder cancer in mice. Influence of Freund complete adjuvant and associated immunological reactions in mice]. Nihon Hinyokika Gakkai Zasshi 1990; 81: 993–6.

    PubMed  CAS  Google Scholar 

  19. Shibaki A, Katz SI. Induction of skewed Th1/Th2 T-cell differentiation via subcutaneous immunization with Freund’s adjuvant. Exp Dermatol 2002; 11: 126–34.

    Article  PubMed  CAS  Google Scholar 

  20. Hong S, Qian J, Li H, et al. CpG or IFN-alpha are more potent adjuvants than GM-CSF to promote anti-tumor immunity following idiotype vaccine in multiple myeloma. Cancer Immunol Immunother 2012; 61: 561–71.

    Article  PubMed  CAS  Google Scholar 

  21. Sugai T, Mori M, Nakazawa M, et al. A CpG-containing oligodeoxynucleotide as an efficient adjuvant counterbalancing the Th1/Th2 immune response in diphtheria-tetanus-pertussis vaccine. Vaccine 2005; 23: 5450–6.

    Article  PubMed  CAS  Google Scholar 

  22. Bode C, Zhao G, Steinhagen F, Kinjo T, Klinman DM. CpG DNA as a vaccine adjuvant. Expert Rev Vaccines 2011; 10: 499–511.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  23. Tighe H, Takabayashi K, Schwartz D, et al. Conjugation of immunostimulatory DNA to the short ragweed allergen amb a 1 enhances its immunogenicity and reduces its allergenicity. J Allergy Clin Immunol 2000; 106(1 Pt 1): 124–34.

    Article  PubMed  CAS  Google Scholar 

  24. Rothenfusser S, Hornung V, Ayyoub M, et al. CpG-A and CpGB oligonucleotides differentially enhance human peptide-specific primary and memory CD8+ T-cell responses in vitro. Blood 2004; 103: 2162–9.

    Article  PubMed  Google Scholar 

  25. Mukherjee P, Pathangey LB, Bradley JB, Tinder TL, Basu GD, Akporiaye ET, et al. MUC1-specific immune therapy generates a strong anti-tumor response in a MUC1-tolerant colon cancer model. Vaccine 2007; 25: 1607–18.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  26. Fourcade J, Kudela P, Andrade Filho PA, et al. Immunization with analog peptide in combination with CpG and montanide expands tumor antigen-specific CD8+ T cells in melanoma patients. J Immunother 2008; 31: 781–91.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  27. Mangsbo SM, Ninalga C, Essand M, Loskog A, Totterman TH. CpG therapy is superior to BCG in an orthotopic bladder cancer model and generatesCD4+T-cell immunity. J Immunother 2008; 31: 34–42.

    Article  PubMed  Google Scholar 

  28. Bochner BH. Gene therapy in bladder cancer. Current Opinion in Urology 2008; 18: 519–23.

    Article  PubMed  Google Scholar 

  29. Zhai Z, Wang Z, Fu S, et al. Antitumor effects of bladder cancerspecific adenovirus carrying E1A-androgen receptor in bladder cancer. Gene Ther 2012; 19: 1065–74.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  30. Zuiverloon TC, Nieuweboer AJ, Vekony H, Kirkels WJ, Bangma CH, Zwarthoff EC. Markers predicting response to bacillus Calmette-Guerin immunotherapy in high-risk bladder cancer patients: a systematic review. Eur Urol 2012; 61: 128–45.

    Article  PubMed  Google Scholar 

  31. Bohle A, Brandau S. Immune mechanisms in bacillus Calmette-Guerin immunotherapy for superficial bladder cancer. J Urol 2003; 170: 964–9.

    Article  PubMed  Google Scholar 

  32. Brandau S, Riemensberger J, Jacobsen M, et al.NKcells are essential for effective BCG immunotherapy. Int J Cancer 2001; 92: 697–702.

    Article  PubMed  CAS  Google Scholar 

  33. Ratliff TL, Ritchey JK, Yuan JJ, Andriole GL, Catalona WJ. T-cell subsets required for intravesical BCG immunotherapy for bladder cancer. J Urol 1993; 150: 1018–23.

    PubMed  CAS  Google Scholar 

  34. Ostrand-Rosenberg S. CD4+ T lymphocytes: a critical component of antitumor immunity. Cancer Invest 2005; 23: 413–9.

    PubMed  CAS  Google Scholar 

  35. Perez-Diez A, Joncker NT, Choi K, et al. CD4 cells can be more efficient at tumor rejection than CD8 cells. Blood 2007; 109: 5346–54.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  36. Marzo AL, Lake RA, Robinson BWS, Scott B. T-cell receptor transgenic analysis of tumor-specific CD8 and CD4 responses in the eradication of solid tumors. Cancer Res 1999; 59: 1071–9.

    PubMed  CAS  Google Scholar 

  37. Heath WR, Carbone FR. Cross-presentation, dendrttic cells, tolerance and immunity. Annu Rev Immunol 2001; 19: 47–64.

    Article  PubMed  CAS  Google Scholar 

  38. Kaufmann O, Volmerig J, Dietel M. Uroplakin III is a highly specific and moderately sensitive immunohistochemical marker for primary and metastatic urothelial carcinomas. Am J Clin Pathol 2000; 113: 683–7.

    Article  PubMed  CAS  Google Scholar 

  39. Ramos-Vara JA, Miller MA, Boucher M, Roudabush A, Johnson GC. Immunohistochemical detection of uroplakin III, cytokeratin 7, and cytokeratin 20 in canine urothelial tumors. Vet Pathol 2003; 40: 55–62.

    Article  PubMed  CAS  Google Scholar 

  40. Ogawa K, Sun TT, Cohen SM. Analysis of differentiation-associated proteins in rat bladder carcinogenesis. Carcinogenesis 1996; 17: 961–5.

    Article  PubMed  CAS  Google Scholar 

  41. Wu X, Kakehi Y, Zeng Y, Taoka R, Tsunemori H, Inui M. Uroplakin II as a promising marker for molecular diagnosis of nodal metastases from bladder cancer: comparison with cytokeratin 20. J Urol 2005; 174: 2138–42.

    Article  PubMed  CAS  Google Scholar 

  42. Kihira S, Yoshida J, Kawada Y, et al. Membrane microdomainassociated uroplakin IIIa contributes to Src-dependent mechanisms of anti-apoptotic proliferation in human bladder carcinoma cells. Biol Open 2012; 1: 1024–34.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  43. Sinha P, Clements VK, Miller S, Ostrand-Rosenberg S. Tumor immunity: a balancing act between T cell activation, macrophage activation and tumor-induced immune suppression. Cancer Immunol Immunother 2005; 54: 1137–42.

    Article  PubMed  CAS  Google Scholar 

  44. Huang HY, Shariat SF, Sun TT, et al. Persistent uroplakin expression in advanced urothelial carcinomas: implications in urothelial tumor progression and clinical outcome. Hum Pathol 2007; 38: 1703–13.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  45. Zhou G, Lu Z, Mccadden JD, Levitsky HI, Marson AL. Reciprocal changes in tumor antigenicity and antigen-specific T cell function during tumor progression. J Exp Med 2004; 200: 1581–92.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  46. Ferretti G, Felici A, Cognettti F. Forkhead box P3-positive regulatory T cells in immune surveillance and cancer. Br J Cancer 2007; 97: 1015–6.

    PubMed Central  PubMed  CAS  Google Scholar 

  47. Sakaguchi S. Naturally arising CD4+ regulatory t cells for immunologic self-tolerance and negative control of immune responses. Annu Rev Immunol 2004; 22: 531–62.

    Article  PubMed  CAS  Google Scholar 

  48. Loskog A, Ninalga C, Paul-Wetterberg G, De La Torre M, Malmstrom PU, Totterman TH. Human bladder carcinoma is dominated by T-regulatory cells and Th1 inhibitory cytokines. J Urol 2007; 177: 353–8.

    Article  PubMed  Google Scholar 

  49. Kottke T, Sanchez-Perez L, Diaz RM, et al. Induction of hsp70-mediated Th17 autoimmunity can be exploited as immunotherapy for metastatic prostate cancer. Cancer Res 2007; 67: 11970–9.

    Article  PubMed  CAS  Google Scholar 

  50. Gnerlich JL, Mitchem JB, Weir JS, et al. Induction of Th17 cells in the tumor microenvironment improves survival in a murine model of pancreatic cancer. J Immunol 2010; 185: 4063–71.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenan Izgi.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Izgi, K., Iskender, B., Sakalar, C. et al. Evaluation of two different adjuvants with immunogenic uroplakin 3A-derived peptide for their ability to evoke an immune response in mice. Eur Cytokine Netw 26, 46–56 (2015). https://doi.org/10.1684/ecn.2015.0365

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1684/ecn.2015.0365

Keywords

Navigation